PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extreme points and support points of a class of analytic functions with missing coefficients

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let Mn(a, b, c) denote a class of functions of the form (...) which are analytic in open unit disk (...) and satisfy the condition (...). In this paper, we obtain the extreme points and support points of the class Mn(a, b, c) of functions.
Wydawca
Rocznik
Strony
525--532
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
  • The College of Engineering and Technical, Chengdu University of Technology, Leshan, Sichuan, 614000, P.R. China
autor
  • The College of Engineering and Technical, Chengdu University of Technology, Leshan, Sichuan, 614000, P.R. China
autor
  • The College of Engineering and Technical, Chengdu University of Technology, Leshan, Sichuan, 614000, P.R. China
autor
  • The College of Engineering and Technical, Chengdu University of Technology, Leshan, Sichuan, 614000, P.R. China
Bibliografia
  • [1] M. K. Aouf, The quasi-Hadamard product of certain analytic functions, Appl. Math. Lett. 21 (2008), 1184–1187.
  • [2] W. Deeb, Extreme points and support points of families of univalent functions with real coefficients, Math. Rep. Toyama Univ. 8 (1985), 103–111.
  • [3] H. E. Darwish, M. K. Aouf, Generalizations of modified-Hadamard products of p-valent functions with negative coefficients, Math. Comput. Modelling 49(1-2) (2009), 38–45.
  • [4] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8(3) (1957), 598–601.
  • [5] D. J. Hallenbeck, Linear Problems and Convexity Techniques in Geometric Function Theorem, Boston: Pitman Advanced Publishing Program, 1984.
  • [6] Z. G. Peng, Extreme points and support points of a class of analysis functions, Acta Math. Sci. 20B(1) (2000), 131–136.
  • [7] Z. G. Peng, F. Su, Extreme points and support points of a family of analytic functions, Acta Math. Sci. 25A(3) (2005), 345–348.
  • [8] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1) (1975), 109–116.
  • [9] H. Silverman, Order of starlikeness for multipliers of univalent functions, J. Math. Anal. Appl. 103 (1984), 48–57.
  • [10] H. M. Srivastava, S. Owa, S. K. Chatterjea, A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova 77 (1987), 115–124.
  • [11] L. P. Xiong, Some general results and extreme points of p-valent functions with negative coefficients, Demonstratio Math. 44(2) (2011), 261–272.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb74555c-bd71-4688-b47b-5ffdc283f88a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.