Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let Mn(a, b, c) denote a class of functions of the form (...) which are analytic in open unit disk (...) and satisfy the condition (...). In this paper, we obtain the extreme points and support points of the class Mn(a, b, c) of functions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
525--532
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- The College of Engineering and Technical, Chengdu University of Technology, Leshan, Sichuan, 614000, P.R. China
autor
- The College of Engineering and Technical, Chengdu University of Technology, Leshan, Sichuan, 614000, P.R. China
autor
- The College of Engineering and Technical, Chengdu University of Technology, Leshan, Sichuan, 614000, P.R. China
autor
- The College of Engineering and Technical, Chengdu University of Technology, Leshan, Sichuan, 614000, P.R. China
Bibliografia
- [1] M. K. Aouf, The quasi-Hadamard product of certain analytic functions, Appl. Math. Lett. 21 (2008), 1184–1187.
- [2] W. Deeb, Extreme points and support points of families of univalent functions with real coefficients, Math. Rep. Toyama Univ. 8 (1985), 103–111.
- [3] H. E. Darwish, M. K. Aouf, Generalizations of modified-Hadamard products of p-valent functions with negative coefficients, Math. Comput. Modelling 49(1-2) (2009), 38–45.
- [4] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8(3) (1957), 598–601.
- [5] D. J. Hallenbeck, Linear Problems and Convexity Techniques in Geometric Function Theorem, Boston: Pitman Advanced Publishing Program, 1984.
- [6] Z. G. Peng, Extreme points and support points of a class of analysis functions, Acta Math. Sci. 20B(1) (2000), 131–136.
- [7] Z. G. Peng, F. Su, Extreme points and support points of a family of analytic functions, Acta Math. Sci. 25A(3) (2005), 345–348.
- [8] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1) (1975), 109–116.
- [9] H. Silverman, Order of starlikeness for multipliers of univalent functions, J. Math. Anal. Appl. 103 (1984), 48–57.
- [10] H. M. Srivastava, S. Owa, S. K. Chatterjea, A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova 77 (1987), 115–124.
- [11] L. P. Xiong, Some general results and extreme points of p-valent functions with negative coefficients, Demonstratio Math. 44(2) (2011), 261–272.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb74555c-bd71-4688-b47b-5ffdc283f88a