PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The Properties of Nanosilver – Doped Nanohydroxyapatite Coating On the Ti13zr13Nb Alloy

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this research was to study the properties of nanohydroxyapatite (nanoHAp) and nanohydroxyapatite, doped with nanosilver (nanoHAp/nanoAg), coatings obtained by an electrophoretic deposition process. The suspensions was prepared by dispersing 0.1 g of HAp nanopowder for nanoHAp coatings and 0.1 g of nanoHAp and 0.025 g nanoAg for nanoHAp/nanoAg coatings. The deposition was carried out for 1 min at 50 V voltage followed by drying at room temperature for 24 h and heating at 800°C for 1 h in vacuum. The thickness of the nanoHAp and nanoHAp/nanoAg coatings was found as of about 5 μm. The corrosion behavior tests made by potentiodynamic methods brought out slightly higher values of corrosion current for nanoHAp coatings and nanoHAp/nanoAg coatings as compared to the reference Ti13Zr13Nb specimen. The nanohardness of the nanoHAp coatings achieved 0.020 ± 0.004 GPa and of the nanoHAp/nanoAg coatings 0.026 ± 0.012 GPa. Nanoscratch test of the nanoHAp and nanoHAp/nanoAg coatings revealed an increased Critical Friction (mN) in the presence of nanosilver particles. The wettability angles decreased for nanoHAp/nanoAg coatings comparing to pure nanoHAp coatings on titanium alloy.
Rocznik
Strony
18--28
Opis fizyczny
Bibliogr. 33 poz., rys., wykr., tab.
Twórcy
  • Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Zielinski A., Sobieszczyk S., Seramak T., Serbinski W., Swieczko-Zurek B., Ossowska A., Biocompatibility and Bioactivity of Load-Bearing Metallic Implants, Advances in Materials Sciences. 10 (2011) 21–31.
  • 2. Bartmanski M., Berk A., Wojcik A., The Determinants of Morphology and Properties of the Nanohydroxyapatite Coating Deposited on the Ti13Zr13Nb Alloy by Electrophoretic Technique, Advances in Materials Science. 16 (2016) 56–66.
  • 3. Drevet R., Ben Jaber N., Fauré J., Tara A., Ben Cheikh Larbi A., Benhayoune H., Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates, Surface and Coatings Technology. 301 (2015) 94–99.
  • 4. Kwok C.T., Wong P.K., Cheng F.T., Man H.C., Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition, Applied Surface Science. 255 (2009) 6736–6744.
  • 5. Strakowska P., Beutner R., Gnyba M., Zielinski A., Scharnweber D., Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results, Materials Science and Engineering C. 59 (2016) 624–635.
  • 6. Huang Y., Hao M., Nian X., Qiao H., Zhang H., Zhang X., Song G., Guo J., Pang X., Zhang H., Strontium and copper co-substituted hydroxyapatite-based coatings with improved antibacterial activity and cytocompatibility fabricated by electrodeposition, Ceramics International. 42 (2016) 11876–11888.
  • 7. Pylypchuk I.V., Petranovskaya A.L., Gorbyk P.P., Korduban A.M., Markovsky P.E., Ivasishin O.M., Biomimetic Hydroxyapatite Growth on Functionalized Surfaces of Ti-6Al-4V and Ti-Zr-Nb Alloys, Nanoscale Research Letters. 10 (2015) 1–8.
  • 8. Ossowska A., Sobieszczyk S., Supernak M., Zielinski A., Morphology and properties of nanotubular oxide layer on the “Ti-13Zr-13Nb” alloy, Surface and Coatings Technology. 258 (2014) 1239–1248.
  • 9. Delgado-Alvarado C., Sundaram P.A., Corrosion evaluation of Ti-48Al-2Cr-2Nb (at.%) in Ringer’s solution, Acta Biomaterialia. 2 (2006) 701–708.
  • 10. Narayanan R., Seshadri S.K., Synthesis and corrosion of functionally gradient TiO2 and hydroxyapatite coatings on Ti-6Al-4V, Materials Chemistry and Physics. 106 (2007) 406–411.
  • 11. Araghi A., Hadianfard M.J., Fabrication and characterization of functionally graded hydroxyapatite/TiO2 multilayer coating on Ti-6Al-4V titanium alloy for biomedical applications, Ceramics International. 41 (2015) 12668–12679.
  • 12. Geetha M., Singh A.K., Asokamani R., Gogia A.K., Ti based biomaterials, the ultimate choice for orthopaedic implants - A review, Progress in Materials Science. 54 (2009) 397–425.
  • 13. Manoj Kumar R., Kuntal K.K., Singh S., Gupta P., Bhushan B., Gopinath P., Lahiri D., Electrophoretic deposition of hydroxyapatite coating on Mg-3Zn alloy for orthopaedic application, Surface and Coatings Technology. 287 (2016) 82–92.
  • 14. Majkowska B., Jazdzewska M., Wolowiec E., Piekoszewski W., Klimek L., Zielinski A., The Possibility Of Use Of Laser-Modified Ti6Al4V Alloy In Friction Pairs In Endoprostheses, Archives of Metallurgy and Materials. 60 (2015) 6–9.
  • 15. Dudek K., Goryczka T., Electrophoretic deposition and characterization of thin hydroxyapatite coatings formed on the surface of NiTi shape memory alloy, Ceramics International. 42 (2016) 19124–19132.
  • 16. Boccaccini R., Keim S., Ma R., Li Y., Zhitomirsky I., Electrophoretic deposition of biomaterials., Journal of the Royal Society, Interface / the Royal Society. 7 (2010) 581–613.
  • 17. Xue W., Tao S., Liu X., Zheng Z., Ding C., In vivo evaluation of plasma sprayed hydroxyapatite coatings having different crystallinity, Biomaterials. 25 (2004) 415–421.
  • 18. Asri R.I.M., Harun W.S.W., Hassan M.A., Ghani S.A.C., Buyong Z., A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals, Journal of the Mechanical Behavior of Biomedical Materials. 57 (2016) 95–108.
  • 19. Kobayashi Y., Shirochi T., Yasuda Y., Morita T., Synthesis of silver/copper nanoparticles and their metal-metal bonding property, Journal of Mining and Metallurgy, Section B: Metallurgy. 49 (2013) 65–70.
  • 20. Chen Y., Zheng X., Xie Y., Ji H., Ding C., Li H., Dai K., Silver release from silver-containing hydroxyapatite coatings, Surface and Coatings Technology. 205 (2010) 1892–1896.
  • 21. Zhang W., Chu P.K., Enhancement of antibacterial properties and biocompatibility of polyethylene by silver and copper plasma immersion ion implantation, Surface and Coatings Technology. 203 (2008) 909–912.
  • 22. Stanić V., Janaćković D., Dimitrijević S., Tanasković S.B., Mitrić M., Pavlović M.S., Krstić A., Jovanović D., Raičević S., Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering, Applied Surface Science. 257 (2011) 4510–4518.
  • 23. Mohan S., Oluwafemi O.S., Songca S.P, Jayachandran V.P., Rouxel D., Joubert O., Kalarikkal N., Thomas S., Synthesis, antibacterial, cytotoxicity and sensing properties of starch-capped silver nanoparticles, Journal of Molecular Liquids. 213 (2016) 75–81.
  • 24. Mirzaee M., Vaezi M., Palizdar Y., Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid, Materials Science and Engineering C. 69 (2016) 675–684.
  • 25. Huang Y., Zhang X., Zhang H., Qiao H., Zhang X., Jia T., Han S., Gao Y., Xiao H., Yang H., Fabrication of silver- and strontium-doped hydroxyapatite/TiO2 nanotube bilayer coatings for enhancing bactericidal effect and osteoinductivity, Ceramics International. 43 (2017) 992–1007.
  • 26. Mohan L., Durgalakshmi D., Geetha M., Sankara Narayanan T.S.N., Asokamani R., Electrophoretic deposition of nanocomposite (HAp + TiO 2) on titanium alloy for biomedical applications, Ceramics International. 38 (2012) 3435–3443.
  • 27. Loch J., Krawiec H., Corrosion behaviour of cobalt alloys in artifical salvia solution, Archives of Foundry Engineering. 13 (2013) 101–106.
  • 28. Farrokhi-Rad M., Shahrabi T., Effect of suspension medium on the electrophoretic deposition of hydroxyapatite nanoparticles and properties of obtained coatings, Ceramics International. 40 (2014) 3031–3039.
  • 29. Abdeltawab A.A., Shoeib M.A., Mohamed S.G., Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions, Surface and Coatings Technology. 206 (2011) 43–50.
  • 30. Yan Y., Zhang X., Huang Y., Ding Q., Pang X., Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium, Applied Surface Science. 314 (2014) 348–357.
  • 31. Clèries L., Fernández-Pradas J., Morenza J., Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation, Biomaterials. 21 (2000) 1861–1865.
  • 32. Huang Y., Hao M., Nian X., Qiao H., Zhang X., Zhang X., Song G., Guo J., Pang X., Zhang H., Strontium and copper co-substituted hydroxyapatite-based coatings with improved antibacterial activity and cytocompatibility fabricated by electrodeposition, Ceramics International. 42 (2016) 11876–11888.
  • 33. Heise S., Höhlinger M., Torres Y., José J., Palacio P., Antonio J., Ortiz R., Wagener V., Virtanen S., Boccaccini A.R., Electrochimica Acta Electrophoretic deposition and characterization of chitosan / bioactive glass composite coatings on Mg alloy substrates, Electrochimica Acta. 232 (2017) 456–464.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb717f4f-e37b-4783-a5c7-7cf09114233c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.