Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Architected metamaterials utilize unique geometries to enhance the mechanical and physical properties of structures. This study investigates the energy absorption capabilities of additively manufactured hybrid strut-based metamaterials, produced using Fused Deposition Modeling (FDM) with Polylactic Acid (PLA). Compression tests were conducted on six novel hybrid strut lattice designs to analyze their structure-property relationships. The designs integrated Kelvin cells, edge struts, octagonal shapes, hex trusses, face-centered components, and corner diagonal struts. The combination of "Kelvin Cell + Octagon" achieved excellent energy absorption efficiency, with the highest Specific Energy Absorption (SEA) of 1450 kJ/kg. Through the synergistic effect of octagonal geometry and Kelvin cell structure, controlled deformation and delayed buckling are realized to release the energy fully and maximize stress wave interaction. However, the configuration of the "Edge Struts + Hex Truss" configuration was not far away either, exhibiting an SEA of 1388.89 kJ/kg, owing to the effective load distribution provided by the hexagonal truss structure. Other configurations had much lower SEA values: 275 kJ/kg for "Kelvin Cell + Hex Truss" 185.71 kJ/kg for "Kelvin Cell + Edge Struts" 162.5 kJ/kg for "Edge Struts + Corner Diagonal" and 26.67 kJ/kg for "Edge Struts + Face Centre". Using microscopy to look at failed samples showed that shapes with hexagonal and octagonal parts increased SEA by making stress distribution more even and limiting deformation during compression. The unit cell geometry is the critical factor for deciding upon the energy absorption capacity of metamaterials. This work provides useful insights to design optimized additively manufactured metamaterials to achieve high energy absorption, which will be useful to applications such as automotive crash protection, aerospace components, personal protective equipment, and vibration damping systems. The "Kelvin Cell + Octagon" and "Edge Struts + Hex Truss" configurations emerge as highly effective designs, balancing strength, ductility, and energy absorption efficiency for advanced engineering applications.
Wydawca
Czasopismo
Rocznik
Strony
52--72
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
- School of Industrial and Information Engineering, Politecnico Di Milano, Milan, Italy
autor
- Department of Mechanical Engineering, Bennett University, Noida, 201310, India
autor
- Symbiosis Institute of Technology, Symbiosis International (Deemed) University, Pune, India
autor
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
autor
- University Centre for Research and Development, Chandigarh University, 140413, Punjab, India
autor
- Faculty of Technology, University of Sunderland, Sunderland SR1 3SD, United Kingdom
- Institute of Engineering and Technology, Chitkara University, 140401, Punjab, India
Bibliografia
- 1. Benedetti, M., Du Plessis, A., Ritchie, R., Dallago, M., Razavi, N., & Berto, F. (2021). Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering R Reports, 144, 100606. https://doi.org/10.1016/j.mser.2021.100606
- 2. Yavas, D., Liu, Q., Zhang, Z., & Wu, D. (2022). Design and fabrication of architected multi-material lattices with tunable stiffness, strength, and energy absorption. Materials & Design, 217, 110613. https://doi.org/10.1016/j.matdes.2022.110613
- 3. Mohammadi, A., Hajizadeh, E., Tan, Y., Choong, P., & Oetomo, D. (2023). A bioinspired 3D-printable flexure joint with cellular mechanical metamaterial architecture for soft robotic hands. International Journal of Bioprinting, 9(3), 696. https://doi.org/10.18063/ijb.696
- 4. Zheng, X., Chen, T., Jiang, X., Naito, M., & Watanabe, I. (2022). Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices. Science and Technology of Advanced Materials, 24(1). https://doi.org/10.1080/14686996.2022.2157682
- 5. Cadoret, N., Chaves-Jacob, J., & Linares, J. (2023). Structural additive manufacturing parts bio-inspired from trabecular bone form-function relationship. Materials & Design, 231, 112029. https://doi.org/10.1016/j.matdes.2023.112029
- 6. Kamranfard, M. R., Darijani, H., Rokhgireh, H., & Khademzadeh, S. (2022). Analysis and optimization of strut-based lattice structures by simplified finite element method. Acta Mechanica, 234(4), 1381–1408. https://doi.org/10.1007/s00707-022-03443-9
- 7. Ansari, A. I., Sheikh, N. A., & Kumar, N. (2023). Energy-Absorbing Characteristics of an ABS-M30i-based 3D-Printed Periodic Surface and Strut-Based Lattice Structure. Journal of the Institution of Engineers (India) Series C, 104(5), 989–1004. https://doi.org/10.1007/s40032-023-00984-3
- 8. Huang, X., Ding, S., Lang, L., & Gong, S. (2023). Compressive response of selective laser-melted lattice structures with different strut sizes based on theoretical, numerical and experimental approaches. Rapid Prototyping Journal, 29(2), 209–217. https://doi.org/10.1108/rpj-12-2021-0339
- 9. Hříbalová, S., Uhlířová, T., & Pabst, W. (2021). Computer modeling of systematic processing defects on the thermal and elastic properties of open Kelvin-cell metamaterials. Journal of the European Ceramic Society, 41(14), 7130–7140. https://doi.org/10.1016/j.jeurceramsoc.2021.07.031
- 10. Sun, Z., Guo, Y., & Shim, V. (2020). Characterisation and modeling of additively-manufactured polymeric hybrid lattice structures for energy absorption. International Journal of Mechanical Sciences, 191, 106101. https://doi.org/10.1016/j.ijmecsci.2020.106101
- 11. Al-Ketan, O., & Al-Rub, R. K. A. (2019). Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Advanced Engineering Materials, 21(10). https://doi.org/10.1002/adem.201900524
- 12. Choukir, S., & Singh, C. (2022). Role of topology in dictating the fracture toughness of mechanical metamaterials. International Journal of Mechanical Sciences, 241, 107945. https://doi.org/10.1016/j.ijmecsci.2022.107945
- 13. Apetre, N. A., Michopoulos, J. G., Rodriguez, S. N., Iliopoulos, A., Steuben, J. C., Graber, B. D., & Arcari, A. (2024). Towards Fatigue-tolerant Design of Additively Manufactured Strut-based Lattice Metamaterials. Journal of Computing and Information Science in Engineering, 24(5). https://doi.org/10.1115/1.4065201
- 14. Li, X., Yu, X., Chua, J. W., Lee, H. P., Ding, J., & Zhai, W. (2021). Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption. Small, 17(24). https://doi.org/10.1002/smll.202100336
- 15. Liu, X., Jeon, J. J., Tiplea, A. G., Li, Y., & Song, B. (2023, October). Design of Low Density Architectured Metamaterials With High Compressive and Torsional Stiffness. In ASME International Mechanical Engineering Congress and Exposition (Vol. 87615, p. V004T04A009). American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2023-110261
- 16. Hussain, S., Nazir, A., Waqar, S., Ali, U., & Gokcekaya, O. (2023). Effect of additive manufactured hybrid and functionally graded novel designed cellular lattice structures on mechanical and failure properties. The International Journal of Advanced Manufacturing Technology, 128(11–12), 4873–4891. https://doi.org/10.1007/s00170-023-12201-7
- 17. Zhao, M., Ji, B., Zhang, D. Z., Li, H., & Zhou, H. (2022). Design and mechanical performances of a novel functionally graded sheet-based lattice structure. Additive Manufacturing, 52, 102676. https://doi.org/10.1016/j.addma.2022.102676
- 18. Xiao, S., Li, Q., Jia, H., Wang, F., Gao, J., Lv, W., Qi, J., Duan, S., Wang, P., & Lei, H. (2023). Mechanical responses and energy absorption characteristics of a novel functionally graded voxel lattice structure. Thin-Walled Structures, 193, 111244. https://doi.org/10.1016/j.tws.2023.111244
- 19. Kappe, K., Hoschke, K., Riedel, W., & Hiermaier, S. (2023). Multi-objective optimization of additive manufactured functionally graded lattice structures under impact. International Journal of Impact Engineering, 183, 104789. https://doi.org/10.1016/j.ijimpeng.2023.104789
- 20. Suzuki, J., & Matsushita, Y. (2023). Kelvin's Tetrakaidecahedron as a Wigner–Seitz Cell Found in Spherically Microphase‐Separated BCC Lattice from AB Diblock Copolymer by Monte Carlo Simulation. Macromolecular Theory and Simulations, 32(5), 2300016. https://doi.org/10.1002/mats.202300016
- 21. Shi, S., Zhou, X., Zhang, J., Chen, B., & Sun, Z. (2023). In-plane compressive response of composite sandwich panels with local-tight honeycomb cores. Composite Structures, 314, 116970. https://doi.org/10.1016/j.compstruct.2023.116970
- 22. Yeshanew, E. S., Ahmed, G. M. S., Sinha, D. K., Badruddin, I. A., Kamangar, S., Alarifi, I. M., & Hadidi, H. M. (2023). Experimental investigation and crashworthiness analysis of 3D printed carbon PA automobile bumper to improve energy absorption by using LS-DYNA. Advances in Mechanical Engineering, 15(6), 16878132231181058. https://doi.org/10.1177/16878132231181058
- 23. Ghanbari, J., & Panirani, P. N. (2024). A hybrid bio-inspired sandwich structures for high strain rate energy absorption applications. Scientific Reports, 14(1), 2865. https://doi.org/10.1038/s41598-024-53521-2
- 24. Ramakrishna, D., & Bala Murali, G. (2023). Bio-inspired 3D-printed lattice structures for energy absorption applications: A review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 237(3), 503-542. https://doi.org/10.1177/14644207221121948
- 25. Ciliveri, S., & Bandyopadhyay, A. (2022). Influence of strut-size and cell-size variations on porous Ti6Al4V structures for load-bearing implants. Journal of the mechanical behavior of biomedical materials, 126, 105023. https://doi.org/10.1016/j.jmbbm.2021.105023
- 26. Yang, X., & Keten, S. (2021). Multi-stability property of magneto-kresling truss structures. Journal of Applied Mechanics, 88(9), 091009. https://doi.org/10.1115/1.4051705
- 27. Sypeck, D. J. (2005). Cellular truss core sandwich structures. Applied Composite Materials, 12, 229-246. https://doi.org/10.1007/s10443-005-1129-z
- 28. Zhang, Z., Liu, L., Ballard, J., Usta, F., & Chen, Y. (2024). Unveiling the mechanics of deep-sea sponge-inspired tubular metamaterials: Exploring bending, radial, and axial mechanical behavior. Thin-Walled Structures, 196, 111476. https://doi.org/10.1016/j.tws.2023.111476
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb70e7ba-1f3d-47f3-acde-b960d5d3d35c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.