PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes of sand density impact on water filter backwashing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ zmian gęstości piasku na płukanie filtrów pospiesznych wody
Języki publikacji
EN
Abstrakty
EN
Media of rapid filters is the subject of abrasion and coverage by biofilm which partially is not removed during backwashing. The empirical tests done for predicting the optimal backwash intensity as a function of water temperature proved that in computing the sand expansion it is necessary to take into consideration not only changes of the grains’ shape but also the density of sand grains as the result of growing biofilm.
PL
Złoża pospiesznych filtrów piaskowych ścierają się i pokrywają z czasem biofilmem, który nie jest w całości usuwany w czasie płukania. Empiryczne testy wykonane w celu doboru optymalnej wielkości intensywności płukania w funkcji temperatury wody płucznej wykazały, że w obliczeniach wielkości ekspansji złoża należy uwzględnić nie tylko zmianę w czasie eksploatacji kształtu ziaren ale również ich gęstości, która wynika z obrastania ich biofilmem.
Czasopismo
Rocznik
Tom
Strony
45--48
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wzory
Twórcy
  • Politechnika Krakowska
autor
  • San Projekt
Bibliografia
  • [1] Amburgey J. E., Amirtharajah A., Brouckaert B. M., Spivey N. C., An enhanced backwashing technique for improved filter ripening, Journal AWWA, 2003, 95, 12, 81-94
  • [2] Amburgey J. E., Amirtharajah A., Strategic filter backwashing techniques and resulting particle passage, Journal of Environmental Engineering, 2005, April, 131, 4, 535-547
  • [3] Amirtharajah A., Cleasby J. L., Predicting expansion of filters during backwashing, Journal AWWA, 1972, January pp. 52-59
  • [4] Amirtharajah A., Optimum backwashing of sand filters, Journal of the Environmental Engineering Division, ASCE, 1978, vol. 104, no. EE5, October, pp. 917-931
  • [5] Amirtharajah A., Some theoretical and conceptual views of filtration. Journal AWWA, 1988, December pp. 34-46
  • [6] Amirtharajah A., The interface between filtration and backwashing, Water Research, 1985, vol. 19, no. 5, pp. 581-588
  • [7] Amirtharajah A., Wetstein D. P., Initial degradation of effluent quality during filtration, Journal AWWA, 1980, 72, 10, 518-524
  • [8] Amirtharajah A: Fundamentals and theory of air scour, Journal of Environmental Engineering, ASCE, 1984, vol. 110, no. 3, June, 573-590
  • [9] Cleasby J. L., Fan K-s., Predicting fluidization and expasion of filter media. Journal of the Environmental Engineering Division, Proc. ASCE., 1981, 107 (EE3): 455-471
  • [10] Cleasby J. L., Logsdon G. S., Granular bed and precoat filtration, Water Quality and treatment, wydanie 5, McGraw-Hill, New York, 1999
  • [11] Cleasby J. L., Fan K. S., Closure Predicting fluidization and expansion of filter media, Journal of the Environmental Engineering Division, ASCE, 1982, vol. 108, no. EE5, 1083-1087
  • [12] Cleasby J. L., Kuo-Shuh Fan, 1981, Predicting fluidization and expansion of filter media, Journal Sanitary Engineering Div. ACSE., vol. 107
  • [13] Clements M., Changes in the mechanical behaviour of filter media due to biological growth, thesis submitted in partial fulfillment of the requirements for the degree Doctor Ingeneriae, Rand Afrikaans University, November 2004, 150 pp.
  • [14] Dąbrowski W., Korczak P., Strategia płukania filtrów w ujęciu monograficznym, Politechnika Krakowska, 2008, Kraków
  • [15] Dąbrowski W., Spaczyńska M., Mackie R. I., A model to predict Granular Activated Carbon backwash curves, Clean-Soil, Air, Water, 2008, 36, 1, 103-110
  • [16] Dąbrowski W., Plata M., Podstawy teoretyczne płukania filtrów pospiesznych wody, Rynek Instalacyjny, 2018, 26, 5, 32-36
  • [17] Dąbrowski W., Plata M., Oszczędności energii i ilości wody płucznej w procesie płukania filtrów pospiesznych wody, 2018, 26, 6, 75-79
  • [18] Dharmarajah A. H., Cleasby J. L., Predicting the expansion behavior of filter media. Journal American Water Works Association, 1986, 78 (12): 66-76
  • [19] Di Felice R., Hydrodynamics of liquid fluidization, Chemical Engineering Science, 1995, vol. 50, no. 8, 1213-1245
  • [20] Di Felice R., The void function for fluid-particle interaction systems, International Journal of Multiphase Flow, 1994, vol. 20, pp. 153-159
  • [21] Epstein N., Teetering, Powder Technology, 2005, vol. 151, 2-14
  • [22] Fair G. M., Geyer J. C., Okun D. A., Water and Wastewater Engineering, John Willey & Sons, Inc., 1968, New York
  • [23] Ferrara A. P., Controlling bed losses of granular activated carbon through proper filter operation. Journal American Water Works Association. 1980, 72(1): 60-63
  • [24] Fitzpatrick C.S.B., Observations of particle detachment during filter backwashing, Water Science and Technology, 1993, vol. 27, no. 10, 213-221
  • [25] Grabarczyk C., Hydromechanika filtrowania wody, Wydawnictwo Naukowo Techniczne, Warszawa 2010
  • [26] Gunasingham K., Lekkas T. D., Fox G.T.J., Graham, M. A., Predicting the expansion of granular filter beds. Filtration and Separation., 1979, 16 (Nov./Dec.): 619-623
  • [27] Hemmings D. G., Fitzpatrick C.S.B., Pressure signal analysis of combined water and air backwash of rapid gravity filters, Water Research, 1997, vol. 31, no. 2, 356-361
  • [28] Humby M. S., Fitzpatrick C.S.B., Attrition of granular filter media during backwashing with combined air and water, Water Research, 1996, vol. 30, no. 2, 291-294
  • [29] Kawamura S. Design and operation of high-rate filters, part 2. Journal AWWA. 1975, 67 (Nov.): 653-662
  • [30] Kawamura S., Najm N. N., Gramith K., Modifying a backwash through to reduce media loss, Journal AWWA, 1997, December, 47-59
  • [31] Limtrakul S., Chen J., Remachandran P. A., Duduković M. P., Solid motion and holdup profiles in liquid fluidized beds, Chemical Engineering Science, 2005, vol. 60, 1889-1900
  • [32] Logsdon G. S., Effective management and operation of coagulation and filtration, Water, Air and Soil Pollution, 2000, vol. 123, 159-166
  • [33] Mazzei, Lettieri P., Elson T., Colman D., A revised mono-dimensional particle bed model for fluidized beds, Chemical Engineering Science, 2006, vol. 61, 1958-1972
  • [34] Montgomery J. M., Water treatment. Principles and design, John Willey & Sons, Inc., New York, 1985
  • [35] Muslu Y., A new approach to the prediction of fluidization of filter media, Water Research, 1987, vol. 21, no. 9, pp. 1053-1060
  • [36] Muslu Y., Shape factor and degree packing in fluidization, Journal of Environmental Engineering, 1987, vol. 113, no. 2, April 311-329
  • [37] Nemwth T. 1978. Backwash of filters with activated carbon. Vatten 78(3): 170-178
  • [38] Orzechowski Z., Prywer J., Zarzycki R., Mechanika płynów w inżynierii środowiska. WNT, 1997, Warszawa
  • [39] Richardson J. F., Zaki W. N., 1954: Sedimentation and fluidization - Part I, Trans. Instn. Chem. Engrs. Vol. 32, 35-53
  • [40] Rowe P. N., Drag forces in a hydraulic model of a fluidized bed - part II, Trans. Instn. Chem. Engrs., 1961, vol. 39, 175-180
  • [41] Sholij J., Johnson F. A., Comparison of backwash models for granular media, Journal of Environmental Engineering, ASCE, 1987, vol. 113, no. 3, June, 532-549
  • [42] Sholji I., Expansion of granular filters during backwashing. Journal of Environmental Engineering. ASCE, 1987, 113(3): 516-531
  • [43] Siwiec T., The experimental verification of Richardson - Zaki law on example of selected beds used in water treatment, Electronic Journal of Polish Agricultural Universities, EJPAU, 2007, 10 (1)
  • [44] Siwiec T., The sphericity of grains of filtration beds applied for water treatment on example of selected minerals, Electronic Journal of Polish Agricultural Universities, Civil Engeering, 2007, vol. 10, issue 1
  • [45] Siwiec T., Warunki płukania filtrów jednowarstwowych i wielowarstwowych wybranych złóż filtracyjnych, Wydawnictwo SGGW, 2007
  • [46] Snowball M., Reducing backwash with air scouring, Filtration&Separation, 2006, Dec., 39-40
  • [47] Stevenson D. G. 1995. Process conditions for the backwashing of filters with simultaneous air and water, Wat. Res., 1995, 29 (11): 2594-2597
  • [48] Van Zessen E., Tramper J., Rinzema A., Beefitink H. H., Fluidized-bed and packed-bed characteristics of gel beads, Chemical Engineering Journal, 2005, vol. 115, 103-111
  • [49] Wen C. Y., You Y. H., Mechanics of fluidization, Chemical Engineering Progress, Symposium Series, 1966, 62, 100-111
  • [50] Yang J., Renken A., A generalized correlation for equilibrium of forces in liquid-solid fluidized beds, Chemical Engineering Journal, 2003, vol. 92, 7-14
  • [51] Yun J., Yao S-J., Lin D. Q., Lu M. H., Zhao W. T., Modeling axial distributions of adsorbent particle size and local voidage in expanded bed. Chemical Engineering Science, 2004, vol. 59, 449-457
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb6ebe6c-1b8b-4a03-bdad-30ad577c5659
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.