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Abstract. In this paper, we study semicircular-like elements, and semicircular elements
induced by p-adic analysis, for each prime p. Starting from a p-adic number field Qp, we
construct a Banach ∗-algebra LSp, for a fixed prime p, and show the generating elements Qp,j

of LSp form weighted-semicircular elements, and the corresponding scalar-multiples Θp,j of
Qp,j become semicircular elements, for all j ∈ Z. The main result of this paper is the very
construction of suitable linear functionals τ0

p,j on LSp, making Qp,j be weighted-semicircular,
for all j ∈ Z.
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1. INTRODUCTION

The main purpose of this paper is to construct weighted-semicircular, and semicircular
elements for a fixed prime p. Starting from a prime p, we consider p-adic analysis on the
p-adic number field Qp, and a certain ∗-algebra Mp of all measurable functions on Qp.
By establishing suitable C∗-probabilistic structures on the C∗-algebra Mp, generated
byMp, we focus on a semigroup Sp in Mp, generating C∗-subalgebra Sp of Mp. By fil-
terizing, or sectionizing Sp from a system of linear functionals, we construct-and-study
Banach ∗-probabilistic structures, and our associated weighted-semicircular, and
semicircular elements. In classical statistics, and in applications of it, one consider
Gaussian elements, or Gaussian processes by taking suitable measures (or suitable
probability density functions) (e.g., [1–3] and [20]). By analogy, we construct our
semicircular-like, and semicircular elements by taking (a) suitable (system of) linear
functionals on a Banach ∗-algebra.
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Let Qp be the p-adic number fields for p ∈ P, where P is the set of all primes in
the natural numbers (or the positive integers) N. Then one can naturally understand
Qp as a measure space (Qp, σ(Qp), µp), where µp is a both-left-and-right additive
invariant Haar measure on the σ-algebra σ(Qp), containing the basis elements of the
topology for Qp, formed by transforming the unit disk Zp of Qp, satisfying

µp(Zp) = 1 = µ (x+ Zp) ,

for all x ∈ Qp.
The ∗-algebra Mp, consisting of all µp-measurable functions on Qp, is

well-determined for p ∈ P, and we cannot help emphasizing the importance of such
algebraic structures not only in various mathematical fields (modern number theory,
geometry with “very small” distance, and operator theory, etc, e.g., [15, 16, 18, 19]
and [30]), but also in other scientific fields (quantum physics, quantum arithmetic
chaos theory, etc., e.g., [3, 6, 8, 9, 13,14] and [29]).

1.1. BACKGROUND AND MOTIVATION

The relations between primes and operator algebras have been studied in various
different approaches (e.g., [3–5, 11, 13, 14, 23, 29] and [32]). For instance, we studied
how primes act “on” certain von Neumann algebras generated by p -adic and Adelic
measure spaces (e.g., [9]). Independently, in [7] and [8], we have studied primes as linear
functionals acting on arithmetic functions. i.e., each prime p induces a free-probabilistic
structure (A, gp) on the algebra A of all arithmetic functions. In such a case, one can
understand arithmetic functions as Krein-space operators, under certain representations
(See [11]). And, free-probabilistic research on classical Hecke algebras induced by primes
is considered (e.g., [10]).

Motivated by the main results of [9], we realized that our free-probabilistic settings
can be applicable, or used for the applied operator theory based on number-theoretic
information. In particular, one may construct semicircular law, or semicircular-like
law from a fixed prime.

1.2. MAIN IDEAS

In this paper, we study certain operators of the C∗-algebras Mp induced by the
∗-algebraMp of µp-measurable functions over a fixed p-adic number field Qp. In par-
ticular, we are interested in mutually-orthogonal projections {Pj}j∈Z of Mp induced by
generating elements of Mp. We show that such projections generate a well-defined em-
bedded sub-semigroup Sp of Mp. From such a semigroup, the corresponding semigroup
C∗-algebra Sp is constructed and studied.

From the isomorphism theorem of Sp, we define Banach-space operators cp and ap
acting “on Sp,” and study fundamental properties of these operators. Then we define
a new Banach-space operator lp “on Sp” by

lp = cp + ap,

which gives a filterization, or filterings on Sp.
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By fixing a projection Pj generating Sp in Mp, construct a system of operators
{lnp ⊗ Pj}∞n=1, and study free-distributional data of the elements in the family. We
show the family induces (free-)semicircular law, under additional processes.

By the semicircularity (e.g., [3, 31] and [34]), our semicircular elements have the
same free-distributional data with any other semicircular elements in free probability
theory under identically free-distributedness. So, more interesting results are from
our so-called weighted-semicircular elements. We will see that the free-probabilistic
information of such semicircular-like elements are determined by the number-theoretic
data fromMp.

Constructions of weighted-semicircular elements and semicircular elements, them-
selves, are the very main results of this paper. It shows that from a p-adic analytic
data, one can obtain semicircular-like property, and semicircularity.

1.3. OVERVIEW

In Section 2, we briefly introduce basic concepts for our proceeding works.
In Sections 3, free-probabilistic models onMp is considered in terms of the basis

elements of the topology for Qp. In particular, our free-probabilistic structures imply
p-adic-analytic information under p-adic integration. See Theorems 3.7 and 3.8.

In Sections 4, the Hilbert-space representations of the free-probabilistic models
ofMp are established, and the corresponding C∗-algebras Mp generated byMp are
constructed. Our Hilbert space whereMp act are naturally constructed by defining
inner product determined by p-adic integration of Section 3. Then every element of
Mp is acting on it as a multiplication operator.

In Section 5, we build suitable free-probabilistic models of Mp, and study funda-
mental free-distributional data on Mp. See Theorems 5.3 and 5.3, and Corollary 5.4.

In Sections 6, we fix certain projections {Pj}j∈Z in Mp, and establish the corre-
sponding semigroups Sp generated by the projections, and semigroup C∗-algebras Sp

of Sp inMp. The C∗-subalgebras Sp give certain filterizations onMp. See Theorems 6.2
and 6.3.

In Section 7, based on the constructions of Sp, we establish weighted-semicircular
elements in a certain Banach ∗-probability space Lp ⊗C Sp. And then, corresponding
semicircular elements are obtained from our weighted-semicircular elements. Of course,
one can check our semicircular elements are following the semicircular law, meanwhile,
our weighted-semicircular elements followed semicircular-like law determined by a fixed
prime p. See Theorems 7.5, 7.11, 7.12 and 7.14.

2. PRELIMINARIES

In this section, we briefly mention about backgrounds of our works.
2.1. FUNDAMENTALS

Readers can check fundamental analytic-and-combinatorial free probability theory
from e.g., [25–27,31,33] and [34]. Free probability is understood as the noncommutative
(and hence, covering commutative) operator-algebraic version of classical probability
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theory. The classical independence is replaced by the freeness. It has various appli-
cations not only in pure mathematics (e.g., [22, 24] and [23]), but also in related
mathematical-and-scientific topics (e.g., [5,6,8,9,11,12,17] and [32]). In particular, we
will use combinatorial free probabilistic approach of Speicher (e.g., [25–27] and [28]).
Free moments and free cumulants of operators will be computed without introducing
in detail.

2.2. p-ADIC NUMBER FIELDS Qp

Let p be a fixed prime in P , and Qp, the corresponding p-adic number field. Then this
set Qp is a well-defined ring, which is regarded as a Banach space equipped with the
p-norm | · |p, defined by

|x|p =
∣∣pkr

∣∣
p

= 1
pk
,

whenever x = pkr in Q, for some k ∈ N0 = N ∪{0}. For instance,
∣∣∣∣
4
3

∣∣∣∣
2

=
∣∣22 · 3−1∣∣

2 = 1
22 = 1

4 ,

and
∣∣∣∣
4
3

∣∣∣∣
3

=
∣∣4 · 3−1∣∣

3 = 1
3−1 = 3,

and
∣∣∣∣
4
3

∣∣∣∣
q

= 0, whenever q ∈ P \ {2, 3}.

As a topological space, Qp has its basis elements transforming the unit disk

Zp = {x ∈ Qp : |x|p = 1} of Qp,

consisting of all p-adic integers, i.e.,

Qp =
⋃

k∈Z
pkZp, (2.1)

where
pkZp = {pky : y ∈ Zp} ⊂ Qp.

Throughout this paper, we write

Uk = pkZp in Qp, for all k ∈ Z,

with U0 = Zp, for convenience.
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Also, the p-adic number field Qp is a measure space,

(Qp, σ(Qp), µp) ,

equipped with the additive left-and-right invariant Haar measure µp on the σ-algebra
σ (Qp).

Note that
µp(Uk) = 1

pk
= µp (x+ Uk) , for all k ∈ Z, (2.2)

for all x ∈ Qp, satisfying,
µp(U0) = µp (Zp) = 1.

Remark that, by the very definition, one has the following chain relation,

· · · ⊂ U2 ⊂ U1 ⊂ U0 ⊂ U−1 ⊂ U−2 ⊂ · · ·, (2.3)

in Qp.
In conclusion, a p-adic number Qp is a Banach (topological, measure-theoretic)

ring, satisfying (2.1), (2.2) and (2.3). For more details, see [29].
Whenever we fix an integer k ∈ Z, one can determine so-called the k-th boundary

∂k of Uk in Qp;
∂k = Uk \ Uk+1, (2.4)

by (2.3), where A \ B = A ∩ Bc, for all sets A and B, where Bc is the complement
of B (in a universal set containing A and B). Remark that, by (2.2) and (2.4), one
can get that

µp (∂k) = µp (Uk)− µp (Uk+1)

= 1
pk
− 1
pk+1 = µp (x+ ∂k) ,

(2.5)

for all k ∈ Z, for all x ∈ Qp. Also, remark that, by (2.4), one obtains the partition
of Qp,

Qp =
⊔

k∈Zp

Uk, (2.6)

where
⊔

means the disjoint union.
By understanding Qp as a measure space, we have the (pure-algebraic) ∗-algebra

Mp consisting of all µp-measurable functions over the complex numbers C, i.e.,

Mp = {f : Qp → C : f is µp-measurable}, (2.7)

equipped with the usual functional addition, and the usual functional multiplications.
By definition, if f ∈Mp, it is expressed by

f =
∑

S∈σ(Qp)

tSχS , with tS ∈ C,
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where χS are the usual characteristic functions for S ∈ σ(Qp), having its adjoint,

f∗ =
∑

S∈σ(Qp)

tSχS ,

where z are the conjugates of z, for all z ∈ C, and
∑

is a finite sum.
Indeed, the vector spaceMp of (2.7) forms a well-defined ∗-algebra over C.
For all f ∈Mp, one can have the p-adic integral of f by

∫

Qp

fdµp =
∑

S∈σ(Qp)

tSµp(S).

Note that, by (2.6), if S ∈ σ(Qp), then there exists a subset ΛS of Z, such that

ΛS = {j ∈ Z : S ∩ ∂j 6= ∅}, (2.8)

satisfying
∫

Qp

χSdµp =
∫

Qp

∑

j∈ΛS

χS∩∂j
dµp =

∑

j∈ΛS

µp (S ∩ ∂j) ≤
∑

j∈ΛS

µp (∂j) =
∑

j∈ΛS

(
1
pj
− 1
pj+1

)
,

by (2.4), (2.6) and (2.5), i.e.,
∫

Qp

χSdµp ≤
∑

j∈ΛS

(
1
pj
− 1
pj+1

)
, (2.9)

for all S ∈ σ(Qp), where ΛS is subset (2.8) of Z. More precisely, one can get the
following proposition.
Proposition 2.1. Let S ∈ σ(Qp), and let χS ∈ Mp. Then there exist rj ∈ R, such
that

0 ≤ rj ≤ 1 in R, for all j ∈ ΛS , (2.10)
and ∫

Qp

χSdµp =
∑

j∈ΛS

rj

(
1
pj
− 1
pj+1

)
.

Proof. By (2.9), whenever S ∈ σ (Qp), there exists a subset ΛS of Z, in the sense
of (2.8), such that

∫

Qp

χSdµp ≤
∑

j∈ΛS

(
1
pj
− 1
pj+1

)
,

because
µp (S ∩ ∂j) ≤ µp (∂j) = 1

pj
− 1
pj+1 ,

for all j ∈ ΛS .
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So, for each j ∈ ΛS , there exists a unique rj ∈ R, such that

0 ≤ rj ≤ 1,

and
µp (S ∩ ∂j) = rj

(
1
pj
− 1
pj+1

)
.

Therefore, one can get that
∫

Qp

χSdµp =
∑

j∈ΛS

rj

(
1
pj
− 1
pj+1

)
.

By (2.10), one obtains that if

f =
∑

S∈σ(Qp)

tSχS ∈Mp,

then
∫

Qp

fdµp =
∑

S∈σ(Qp)

tS


∑

j∈ΛS

rSj

(
1
pj
− 1
pj+1

)
 , (2.11)

where rSj are in the sense of (2.10), for all j ∈ ΛS , for all S ∈ σ(Qp).
The formula (2.11), obtained from (2.10), provides a universal technique to establish

p-adic calculus.

3. FREE PROBABILITY ONMp

Throughout this section, fix a prime p ∈ P, and Qp, the corresponding p-adic number
field, and letMp be the ∗-algebra consisting of all µp-measurable functions on Qp. In
this section, let’s establish a suitable free-probabilistic model on the ∗-algebraMp.
Remark that free probability provides a universal tool to study free distributions on
“noncommutative” algebras, and hence, it covers the cases where given algebras are
commutative.

As in Section 2.2, let Uk be the basis elements of of the topology for Qp,

Uk = pkZp, for all k ∈ Z, (3.1)

with their boundaries ∂k = Uk \ Uk+1.
Define a linear functional ϕp :Mp → C by

ϕp (f) =
∫

Qp

fdµp, for all f ∈Mp. (3.2)
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Then, by (3.2), one naturally obtains that

ϕp
(
χUj

)
= 1
pj
, and ϕp

(
χ∂j

)
= 1
pj
− 1
pj+1 ,

for all j ∈ Z.
Moreover, by the commutativity onMp,

ϕp (f1f2) = ϕp (f2f1) , for all f1, f2 ∈Mp,

and hence, this linear functional ϕp of (3.2) is a trace on Mp.
Definition 3.1. The free probability space (Mp, ϕp) is called the p-adic free proba-
bility space, for p ∈ P, where ϕp is the linear functional (3.2) onMp.

Let Uk be in the sense of (3.1) in Qp, and χUk
∈Mp, for all k ∈ Z. Then

χUk1
χUk2

= χUk1∩Uk2
= χUmax{k1,k2}

,

by (2.3), where max{k1, k2} means the maximum in {k1, k2}.
Say k1 ≤ k2 in Z. Then Uk1 ⊇ Uk2 in Qp, by (2.3). Therefore, Uk1 ∩ Uk2 = Uk2 in

Qp. So, if k1 ≤ k2 in Z, then
χUk1

χUk2
= χUk1∩Uk2

= χUk2
inMp.

Lemma 3.2. Let Uk be in the sense of (3.1) in Qp. Then

χUk1
χUk2

= χUmax{k1,k2}
inMp, (3.3)

and hence,
ϕp
(
χUk1

χUk2

)
= 1
pmax{k1,k2} .

Proof. By the discussion in the very above paragraph,
Uk1 ∩ Uk2 = Umax{k1,k2} in Qp,

by (2.3), for k1, k2 ∈ Z. So,
χUk1

χUk2
= χUmax{k1,k2}

,

and hence,
ϕp
(
χUk1

χUk2

)
= µp

(
Umax{k1,k2}

)
= 1
pmax{k1,k2} .

Inductive to (3.3), we obtain the following result.
Proposition 3.3. Let (j1, . . . , jN ) ∈ ZN for N ∈ N. Then

N∏

l=1
χUjl

= χUmax{j1,...,jN}
inMp, (3.4)

and hence,

ϕp

(
N∏

l=1
χUjl

)
= 1
pmax{j1,...,jN} .

Proof. The proof of (3.4) is done by induction on (3.3).
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Now, let ∂k be the k-th boundary Uk \ Uk+1 of Uk in Qp, for all k ∈ Z. Then,
for k1, k2 ∈ Z, one obtains that

χ∂k1
χ∂k2

= χ∂k1∩∂k2
= δk1,k2χ∂k1

, (3.5)

where δ means the Kronecker delta, and hence,

ϕp
(
χ∂k1

χ∂k2

)
= δk1,k2ϕp

(
χ∂k1

)
= δk1,k2

(
1
pk1
− 1
pk1+1

)
.

So, we obtain the following computations.

Proposition 3.4. Let (j1, . . . , jN ) ∈ ZN , for N ∈ N. Then

N∏

l=1
χ∂jl

= δ(j1,...,jN )χ∂j1
inMp, (3.6)

and hence,

ϕp

(
N∏

l=1
χ∂jl

)
= δ(j1,...,jN )

(
1
pj1
− 1
pj1+1

)
,

where

δ(j1,...,jN ) =
(
N−1∏

l=1
δjl,jl+1

)
(δjN ,j1) .

Proof. The proof of (3.6) is done by (3.5).

Thus, one can get that, for any S ∈ σ (Qp),

ϕp (χS) = ϕp


∑

j∈ΛS

χS∩∂j




where ΛS is in the sense of (2.8)

=
∑

j∈ΛS

ϕp
(
χS∩∂j

)
=
∑

j∈ΛS

µp (S ∩ ∂j)

=
∑

j∈ΛS

rj

(
1
pj
− 1
pj+1

)
,

(3.7)

by (2.10), where 0 ≤ rj ≤ 1 are in the sense of (2.10), for all j ∈ ΛS .
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Also, if S1, S2 ∈ σ (Qp), then

χS1χS2 =


 ∑

k∈ΛS1

χS1∩∂k




 ∑

j∈ΛS2

χS2∩∂j




=
∑

(k,j)∈ΛS1×ΛS2

(
χS1∩∂k

χS2∩∂j

)

=
∑

(k,j)∈ΛS1×ΛS2

δk,jχ(S1∩S2)∩∂j

=
∑

j∈ΛS1,S2

χ(S1∩S2)∩∂j
,

(3.8)

where
ΛS1,S2 = ΛS1 ∩ ΛS2 ,

because ∂k ∩ ∂j = δk,j∂j , for all k, j ∈ Z.
Thus, there exist wj ∈ R, such that

0 ≤ wj ≤ 1, for all j ∈ ΛS1,S2 , (3.9)

where ΛS1,S2 is in the sense of (3.8), and

ϕp (χS1χS2) =
∑

j∈ΛS1,S2

wj

(
1
pj
− 1
pj+1

)
,

by (3.8) and (2.10), for all S1, S2 ∈ σ (Qp).
Lemma 3.5. Let Sl ∈ σ (Qp), and χSl

∈ (Mp, ϕp), for l = 1, 2, and let

ΛS1,S2 = ΛS1 ∩ ΛS2 ,

where ΛSl
are in the sense of (2.8), for l = 1, 2. Then there exist rj ∈ R, such that

0 ≤ rj ≤ 1 in R, for all j ∈ ΛS1,S2 , (3.10)

and
ϕp (χS1χS2) =

∑

j∈ΛS1,S2

rj

(
1
pj
− 1
pj+1

)
.

Proof. The proof of (3.10) is done by (3.8) and (3.9).

Remark 3.6. In fact, the above lemma can be re-formulated as follows. If S1 and S2
are given as above, then

ϕp (χS1χS2) =





∑
j∈ΛS1,S2

rj

(
1
pj − 1

pj+1

)
if ΛS1,S2 6= ∅,

µp (∅) = 0 if ΛS1,S2 = ∅.
(3.11)

In the following text, if we mention (3.10), then it means (3.11), precisely.
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By the above lemma, we obtain the following general result under induction.

Theorem 3.7. Let Sl ∈ σ(Qp), and let χSl
∈ (Mp, ϕp), for l = 1, . . . , N , for N ∈ N.

Let

ΛS1,...,SN
=

N⋂

l=1
ΛSl

in Z,

where ΛSl
are in the sense of (2.8), for l = 1, . . . , N . Then there exist rj ∈ R, such

that
0 ≤ rj ≤ 1 in R, for all j ∈ ΛS1,...,SN

, (3.12)

and

ϕp

(
N∏

l=1
χSl

)
=

∑

j∈ΛS1,...,SN

rj

(
1
pj
− 1
pj+1

)
.

Proof. The proof of (3.12) is done by induction on (3.10) (or (3.11)).

Similar to (3.10) and (3.11), the above formula (3.12) is refined by

ϕp

(
N∏

l=1
χSl

)
=





∑
j∈ΛS1,...,SN

rj

(
1
pj − 1

pj+1

)
if ΛS1,...,SN

6= ∅,

0 if ΛS1,...,SN
= ∅.

(3.13)

By (3.12) (or (3.13)), we obtain that if

f =
∑

S∈σ(Qp)

tSχS ∈ (Mp, ϕp) , with tS ∈ C,

then

ϕp (f) =
∑

S∈σ(Qp)

tSϕp (χS) =
∑

S∈σ(Qp)

tS


∑

j∈ΛS

rSj

(
1
pj
− 1
pj+1

)
 ,

where rSj are in the sense of (3.12), for all j ∈ ΛS .
Therefore, one can get the following result.

Theorem 3.8. Let fl =
∑

Sl∈σ(Qp)
tSl
χSl

be elements of our p-adic free probability

space (Mp, ϕp) , with tSl
∈ C, for l = 1, . . . , N, for N ∈ N. Then

ϕp

(
N∏

l=1
fl

)
=

∑

(S1,...,SN )∈σ(Qp)N

(
N∏

l=1
tSl

)
 ∑

j∈ΛS1,...,SN

r
(S1,...,SN )
j

(
1
pj
− 1
pj+1

)
 ,

(3.14)
where r(S1,...,SN )

j are in the sense of (3.12), for all j ∈ ΛS1,...,SN
(whenever it is

nonempty).
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Proof. Suppose f1, . . . , fN be given as above in (Mp, ϕp). Then

T =
N∏

l=1
fl =

∑

(S1,...,SN )∈σ(Qp)N

(
N∏

l=1
tSl

)(
N∏

l=1
χSl

)

inMp. Observe that

ϕp (T ) =
∑

(S1,...,SN )∈σ(Qp)N

(
N∏

l=1
tSl

)
ϕp

(
N∏

l=1
χSl

)

=
∑

(S1,...,SN )∈σ(Qp)N

(
N∏

l=1
tSl

)
 ∑

j∈ΛS1,...,SN

r
(S1,...,SN )
j

(
1
pj
− 1
pj+1

)
 ,

by (3.12) (or (3.13)), where r(S1,...,SN )
j are in the sense of (3.12).

The above joint free-moment formula (3.14) provides a universal tool to compute
the free distributions of free random variables in our p-adic free probability space
(Mp, ϕp).

4. REPRESENTATIONS OF (Mp, ϕp)

Fix a prime p ∈ P. Let (Mp, ϕp) be the p-adic free probability space. Now, we
construct a representation of the ∗-algebraMp. By understanding Qp as a measure
space, construct the L2-space,

Hp
def= L2 (Qp, σ(Qp), µp) = L2 (Qp) , (4.1)

over C, consisting of all square-integrable µp-measurable functions on Qp. Then this
L2-space is a well-defined Hilbert space equipped with its inner product 〈·, ·〉2,

〈f1, f2〉2
def=
∫

Qp

f1f
∗
2 dµp, for all f1, f2 ∈ Hp. (4.2)

Naturally, Hp is the ‖ · ‖2-norm completion, where

‖f‖2
def=
√
〈f, f〉2, for all f ∈ Hp,

where 〈·, ·〉2 is the inner product (4.2) on Hp.

Definition 4.1. We call the Hilbert space Hp = L2(Qp) of (4.1), the p-adic Hilbert
space.
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By the very construction (4.1) of the p-adic Hilbert space Hp, our ∗-algebraMp

acts on Hp, via an algebra-action α,

α(f) (h) = fh, for all h ∈ Hp, (4.3)

for all f ∈Mp. i.e., the morphism α of (4.3) is an action ofMp acting on the Hilbert
space Hp. i.e., for any f ∈Mp, the image α(f) is an operator on Hp contained in the
operator algebra B(Hp) of all (bounded linear) operators on Hp.

Denote α(f) by αf , for all f ∈ Mp, where α is in the sense of (4.3). Also, for
convenience, denote αχS

simply by αS , for all S ∈ σ (Qp). For instance,

αUk
= αχUk

= α(χUk
),

and
α∂k

= αχ∂k
= α (χ∂k

) ,

for all k ∈ Z, where Uk are in the sense of (3.1), and ∂k are the corresponding
boundaries of Uk in Qp, for all k ∈ Z.

By (4.3), the linear morphism α is a well-determined ∗-algebra action ofMp acting
on Hp. Indeed,

αt1f1+t2f2(h) = (t1f1 + t2f2)h = t1f1h+ t2f2h = t1αf1(h) + t2αf2(h),

for all h ∈ Hp, for all f1, f2 ∈Mp, and t1, t2 ∈ C;

αf1f2(h) = f1f2h = f1 (f2h) = f1 (αf2(h)) = αf1αf2(h),

for all h ∈ Hp, for all f1, f2 ∈Mp; and

〈αf (h1), h2〉2 = 〈fh1, h2〉2 =
∫

Qp

fh1h
∗
2dµp

=
∫

Qp

h1fh
∗
2dµp =

∫

Qp

h1 (h2f
∗)∗ dµp

=
∫

Qp

h1 (f∗h2)∗ dµp = 〈h1, αf∗(h2)〉2 ,

for all f ∈Mp, and for all h1, h2 ∈ Hp, which implies that

α∗f = αf∗ , for all f.

Proposition 4.2. The linear morphism α of (4.3) is a well-defined ∗-algebra action
ofMp acting on Hp. Equivalently, the pair (Hp, α) is a well-determined Hilbert-space
representation ofMp.
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Proof. By the discussions in the very above paragraphs, the linear morphism α satisfies
that

αf1f2 = αf1αf2 on Hp,

and
α∗f1 = αf∗1 on Hp,

for all f1, f2 ∈ Mp. i.e., α is a ∗-homomorphism from Mp into B(Hp). Therefore,
the pair (Hp, α) is a Hilbert-space representation ofMp.

In the above proposition, we showed that the pair (Hp, α) of the p-adic Hilbert
space Hp and the action α of (4.3) is a Hilbert-space representation ofMp.

Definition 4.3. The Hilbert-space representation (Hp, α) is said to be the p-adic
(Hilbert-space) representation ofMp.

By the definition (4.3) of the action α ofMp, it generates multiplication operators
αf on the p-adic Hilbert space Hp of (4.1) with their symbols f , for all f ∈ (Mp, ϕp).

Definition 4.4. Let Mp be the operator-norm closure ofMp in the operator algebra
B(Hp), i.e.,

Mp
def= α (Mp) = C [αf : f ∈Mp] in B(Hp), (4.4)

where X mean the operator-norm closures of subsets X of B(Hp). Then this C∗-algebra
Mp is called the p-adic C∗-algebra of (Mp, ϕp).

5. FREE PROBABILITY ON Mp

Throughout this section, we fix a prime p ∈ P. Let (Mp, ϕp) be the corresponding
p-adic free probability space, and (Hp, α), the p-adic representation ofMp, and let
Mp be the corresponding p-adic C∗-algebra of (Mp, ϕp). In this section, we consider
suitable free-probabilistic models on Mp. In particular, we are interested in a system
{ϕpj}j∈Z of linear functionals on Mp, determined by the j-th boundaries {∂j}j∈Z of Qp.

Define a linear functional ϕpj : Mp → C by a linear morphism,

ϕpj (a) def=
〈
αa(χ∂j

), χ∂j

〉
2 , for all a ∈Mp, (5.1)

for all j ∈ Z, where 〈·, ·〉2 is the inner product (4.2) on the p-adic Hilbert space Hp

of (4.1).
First, remark that, if a ∈Mp, then

a =
∑

S∈σ(Qp)

tSχS inMp, with tS ∈ C,

where
∑

is a finite or an infinite (limit of finite) sum(s), under C∗-topology of Mp.
Thus, the above definition (5.1) is well-defined, and every linear functional ϕpj are
bounded on Mp, for all j ∈ Z.



Semicircular elements induced by p-adic number fields 679

Definition 5.1. Let j ∈ Z, and let ϕpj be the linear functional (5.1) on the p-adic
C∗-algebra Mp. Then the C∗-probability space

(
Mp, ϕ

p
j

)
is said to be the j-th (p-adic)

C∗-probability space.
So, one can get the system

{(Mp, ϕ
p
j ) : j ∈ Z}

of C∗-probability spaces for a fixed C∗-algebra Mp.
Now, fix j ∈ Z, and take the corresponding j-th C∗-probability space

(
Mp, ϕ

p
j

)
for

S ∈ σ (Qp), and an element χS ∈Mp, one has that

ϕpj (χS) =
〈
αS(χ∂j

), χ∂j

〉
2 =

〈
χS∩∂j

, χ∂j

〉
2

=
∫

Qp

χS∩∂jχ
∗
∂j
dµp =

∫

Qp

χS∩∂jχ∂jdµp

=
∫

Qp

χS∩∂jdµp = µp (S ∩ ∂j) = rS

(
1
pj
− 1
pj+1

)
,

for some 0 ≤ rS ≤ 1 in R, i.e., there exists 0 ≤ rS ≤ 1, such that

ϕpj (χS) = µp (S ∩ ∂j) = rS

(
1
pj
− 1
pj+1

)
, (5.2)

for any S ∈ σ (Qp).
Proposition 5.2. Let S ∈ σ (Qp), and αS = αχS

∈
(
Mp, ϕ

p
j

)
, for a fixed j ∈ Z. Then

there exists rS ∈ R, such that

0 ≤ rS ≤ 1 in R, (5.3)

and
ϕj (αnS) = rS

(
1
pj
− 1
pj+1

)
, for all n ∈ N.

Proof. Remark that the element αS is a projection in Mp in the sense that

α∗S = αS = α2
S inMp,

since
α∗S = α(χS)∗ = α(χ∗S) = α(χS) = αS ,

and
α2
S = α(χ2

S) = α(χS) = αS inMp.

So,
αnS = αS , for all n ∈ N.

Thus, for any n ∈ N, we have

ϕpj (αnS) = ϕpj (αS) = rS

(
1
pj
− 1
pj+1

)
,

for some 0 ≤ rS ≤ 1 in R, by (5.2).
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The free-moment formula (5.3) characterizes the free distributions of χS in the
j-th C∗-probability space

(
Mp, ϕ

p
j

)
, for all S ∈ σ (Qp), for all j ∈ Z.

More precisely, we obtain the following theorem.

Theorem 5.3. Let Sl ∈ σ (Qp), and αSl
= α (χSl

) ∈
(
Mp, ϕ

p
j

)
, for a fixed j ∈ Z,

for l = 1, . . . , N , for N ∈ N. Then there exists r(S1,...,SN ) ∈ R, such that

0 ≤ r(S1,...,SN ) ≤ 1 in R, (5.4)

and

ϕj

((
N∏

l=1
αSl

)n)
= r(S1,...,SN )

(
1
pj
− 1
pj+1

)
,

for all n ∈ N.

Proof. Let S1, . . . , SN be µp-measurable subsets of Qp, for N ∈ N, and let

S =
N⋂

l=1
Sl ∈ σ (Qp) .

Then, one has that

αS =
N∏

l=1
αSl

inMp,

satisfying
α∗S = αS = α2

S inMp.

Indeed, if S 6= ∅, then the above projection-property holds in Mp, and if S = ∅,
then χS = 0Mp

, the zero element of Mp, which is a projection, too. So,

αnS = αS , for all n ∈ N.

Therefore,

ϕpj (αnS) = ϕpj (αS) = rS

(
1
pj
− 1
pj+1

)
,

for some 0 ≤ rS ≤ 1 in R, by (5.3), for all n ∈ N.

The above joint free-moment formula (5.4) characterizes the free-distributions of
finitely many projections αS1 , . . . , αSN

in the j-th C∗-probability space
(
Mp, ϕ

p
j

)
,

for j ∈ Z.
As corollaries of (5.4), we obtain the following results.

Corollary 5.4. Let Ukbe in the sense of (3.1), and ∂k, the k-th boundaries of Uk
in Qp, for all k ∈ Z. Then

ϕpj
(
αnUk

)
=
{

1
pj − 1

pj+1 if k ≤ j,
0 otherwise,

(5.5)
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and
ϕpj
(
αn∂k

)
= δj,k

(
1
pj
− 1
pj+1

)

for all n ∈ N, for k ∈ Z.
Proof. Observe first that, for any k ∈ Z,

ϕpj
(
αn∂k

)
= ϕpj (α∂k

) = µp (∂j ∩ ∂k) = δj,kµp (∂j) = δj,k

(
1
pj
− 1
pj+1

)
,

for all n ∈ N, because
∂k ∩ ∂j = δj,k∂j in Qp.

Consider now that, for an arbitrarily given k ∈ Z, one has

Uk ∩ ∂j =


 ⊔

l≥k in Z
∂l


 ∩ ∂j =

{
∂j if k ≤ j,
∅ if k > j.

(5.6)

So,

ϕpj
(
αnUk

)
= ϕpj (αUk

) = µp (Uk ∩ ∂j)

=
{
µp (∂j) = 1

pj − 1
pj+1 if k ≤ j,

µp (∅) = 0 otherwise,

by (5.6), for all n ∈ N.

Now, let Sl ∈ σ (Qp), and al = χSl
∈
(
Mp, ϕ

p
j

)
, for j ∈ Z, for l = 1, 2. Then, for

(i1, . . . , in) ∈ {1, 2}n, for n ∈ N,

we have the joint free cumulant in terms of ϕpj ,

kp,jn (ai1 , . . . , ain) =
∑

π∈NC((i1,...,in))

(∏

V ∈π
ϕpj

(∏

il∈V
ail

))
µ(π, 1n)

by the Möbius inversion of [26]

=
∑

π∈NC((i1,...,in))

(∏

V ∈π
µp

(( ⋂

il∈V
Sil

)
∩ ∂j

))
µ(π, 1n)

=
∑

π∈NC((i1,...,in))

(∏

V ∈π

(
rπ,V

(
1
pj
− 1
pj+1

)))
µ(π, 1n),

(5.7)

by (5.4), where 0 ≤ rπ,V ≤ 1 are in the sense of (5.4).
Therefore, by the free cumulant formula (5.7), we obtain the following freeness

condition on the j-th C∗-probability space
(
Mp, ϕ

p
j

)
.
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Theorem 5.5. Let Sl ∈ σ (Qp) , and al = αSl
∈
(
Mp, ϕ

p
j

)
, for j ∈ Z, for l = 1, 2. If

j /∈ ΛSl
in Z, for all l = 1, 2,

where ΛSl
are in the sense of (2.8), for l = 1, 2, then two free random variables a1

and a2 are free in
(
Mp, ϕ

p
j

)
. i.e.,

j /∈ ΛSl
, l = 1 or l = 2⇒ αS1 and αS2 are free in

(
Mp, ϕ

p
j

)
. (5.8)

Proof. Assume that
j /∈ ΛS1 , and j /∈ ΛS2 in Z,

where ΛSl
= {k ∈ Z : Sl ∩ ∂k 6= ∅}, for l = 1, 2. Then, by (5.3) (or, by (5.4)),

ϕpj
(
αnSl

)
= 0, for all l = 1, 2.

Moreover, by the above assupmtion, we have

j /∈ ΛS1,S2 = ΛS1 ∩ ΛS2 .

So, if
(i1, . . . , iN ) ∈ {1, 2}N

is “mixed” in {1, 2}, for N ∈ N \ {1}, then

ϕpj

(
N∏

t=1
αSit

)
= 0,

by (5.4).
It shows that, the self-adjoint elements χS1 and χS2 have not only vanishing free

moments, but also vanishing mixed free moments.
So, by (5.7), we obtain that

kp,jn
(
αSi1

, . . . , αSin

)
=

∑

π∈NC((i1,...,in))

(∏

V ∈π

(
rπ,V

(
1
pj
− 1
pj+1

)))
µ(π, 1n)

=
∑

π∈NC((i1,...,in))

(∏

V ∈π
(0)
)
µ(π, 1n) = 0,

for all “mixed” n-tuples (i1, . . . , in) ∈ {1, 2}n, for all n ∈ N \ {1}.
It guarantees that two random variables χS1 and χS2 are free in

(
Mp, ϕ

p
j

)
.

6. PROJECTIONS {Pj}j∈Z AND THE SEMIGROUP Sp IN Mp

Let’s fix a prime p ∈ P. In Section 5, we considered the free probability on the j-th
C∗-probability space

(
Mp, ϕ

p
j

)
, whereMp is the p-adic C∗-algebra and ϕpj is the linear
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functional (5.1), for j ∈ Z. In particular, we observed fundamental free distributions
of self-adjoint generating elements of Mp.

In this section, we concentrate on a system of projections,

{Pj = α∂j
= αχ∂j

: j ∈ Z} (6.1)

in Mp. Remark that these projections are mutually orthogonal from each other in the
sense that

Pj1Pj2 = δj1,j2Pj1 inMp, for allj1, j2 ∈ Z,

because
χ∂j1

χ∂j2
= δj1,j2χ∂j1

inMp, for all j1, j2 ∈ Z.

Let Pk = α∂k
be a projection (6.1) in the p-adic C∗-algebra Mp, for k ∈ Z. Then,

as we have seen in (5.5),

ϕpj (Pk) = δj,kµp (∂j) = δj,k

(
1
pj
− 1
pj+1

)
, (6.2)

for all j, k ∈ Z.
Now, from the system {Pj}j∈Z of mutually orthogonal projections, let’s construct

the multiplicative semigroup Sp in Mp,

Sp
def=
〈
{Pj}j∈Zp

〉
inMp, (6.3)

under the inherited operator multiplication on Mp.
Then this algebraic structure Sp of (6.3) is a well-determined commutative semi-

group in Mp, which is not a group. Indeed, the inherited operator multiplication is
associative on Sp, but it has no identity in Sp. We call Sp, the projection semigroup of
the system {Pj}j∈Z of (6.1).

Definition 6.1. Define the C∗-subalgebra Sp of the p-adic C∗-algebra Mp by
the C∗-algebra generated by the projection semigroup Sp of (6.3). We call Sp

the projection-semigroup C∗-subalgebra of Mp.

Our projection-semigroup C∗-subalgebra Sp of Mp has the following structure
theorem.

Theorem 6.2. Let Sp be the projection-semigroup C∗-subalgebra of Mp. Then

Sp
∗-iso=

⊕

k∈Z
(C · Pk) ∗-iso= C⊕|Z| inMp, (6.4)

where “∗-iso= ” means “being ∗-isomorphic”, and where ⊕ means topological direct product
of C∗-algebras.

Proof. Let Sp be the projection semigroup of the system {Pj}j∈Z of mutually orthog-
onal projections Pj = α∂j

, for all j ∈ Z, and let Sp = C∗ (Sp) be the corresponding



684 Ilwoo Cho and Palle E.T. Jorgensen

projection-semigroup C∗-subalgebra of the p-adic C∗-algebra Mp. Then, by the very
definition (6.3),

Sp = C∗ (Sp) = C∗ ({Pj}j∈Z) = C [{Pj}j∈Z],

where X are the C∗-norm closures of the subsets X of Mp

=
⊕

j∈Z

(C · Pj)

by the mutually orthogonality of {Pj}j∈Z, and the projection-property of all Pj ’s,
where ⊕ means pure-algebraic direct sum of algebras

=
⊕

j∈Z
(C · Pj) = C⊕|Z|.

The above structure theorem (6.4) of the projection-semigroup C∗-subalgebra Sp

shows that the embedded structure Sp provides a certain filterization, or diagonaliza-
tion in the p-adic C∗-algebra Mp.

Let
(
Mp, ϕ

p
j

)
be the j-th C∗-probability spaces of Section 5, for all j ∈ Z, and let

Sp be our projection-semigroup C∗-subalgebra of Mp. Then, naturally, one obtains
the system of C∗-probability spaces,

{(
Sp, ϕ

p
j

)
: j ∈ Z

}
, (6.5)

by restricting the linear functionals ϕpj on Mp to those on Sp, for all j ∈ Z.
And free-distributional data on Sp is completely determined by the following

result.
Theorem 6.3. Let

(
Sp, ϕ

p
j

)
be a C∗-probability space in (6.5), for any j ∈ Z. For

an element
T =

∑

k∈Z
tkPk ∈ Sp, with tk ∈ C,

we have
ϕpj (Tn) = tnj

(
1
pj
− 1
pj+1

)
, for all n ∈ N, (6.6)

for j ∈ Z.
Proof. Let T =

∑
k∈Z

tkPk ∈ Sp, with tk ∈ C. Then, by the structure theorem (6.4),

T is equivalent to
T

equi=
⊕

k∈Z
tkPk in C

⊕
|Z| = Sp,

satisfying that

Tn
equi=

(⊕

k∈Z
tkPk

)n
=
⊕

k∈Z
tnkP

n
k

equi=
∑

k∈Z
tnkPk,

in Sp, for all n ∈ N.
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Therefore, for any fixed j ∈ Z, one can get that

ϕpj (Tn) = ϕpj

(∑

k∈Z
tnkPk

)
= ϕpj

(
tnj Pj

)
= tnj

(
1
pj
− 1
pj+1

)
,

by (6.2), for all n ∈ N.

7. WEIGHTED-SEMICIRCULARITY INDUCED BYMp

Let p be a fixed prime in P, and let Mp be the p-adic C∗-algebra induced by
the ∗-algebra Mp, under the p-adic representation (Hp, α) of Mp. Let Sp be the
projection-semigroup C∗-subalgebra of Mp, satisfying the structure theorem (6.4);

Sp
∗-iso=

⊕

j∈Z
(C · Pj) ,

where Pj = α∂j are the mutually-orthogonal projections of (6.1), for all j ∈ Z.
Also, let

{(
Sp, ϕ

p
j

)}
k∈Z be the system (6.5) of j-th C∗-probability spaces of Sp.

Recall again that

ϕpj (α∂k
) = δj,k

(
1
pj
− 1
pk+1

)
, for all j, k ∈ Z. (7.1)

Recall now that an arithmetic function φ : N→ C is a Euler totient function, if

φ(n) def= |{k ∈ N |1 ≤ k ≤ n and gcd(k, n) = 1}| , (7.2)

for all n ∈ N, where gcd means the greatest common divisor, and where |x| mean the
cardinalities of sets X.

It is a well-determined multiplicative arithmetic function in the sense that

φ(n1n2) = φ(n1)φ(n2),

whenever gcd(n1, n2) = 1, because

φ(n) = n


 ∏

p∈P,p|n

(
1− 1

p

)
 , for all n ∈ N. (7.3)

By (7.2) and (7.3), the Euler totient function φ satisfies

φ(p) = p− 1 = p

(
1− 1

p

)
, for all p ∈ P.

So, our free-moment computation (7.1) can be re-stated as follows:

ϕpj (α∂k
) = δj,k

1
pj

(
1− 1

p

)
= δj,k

1
pj+1φ(p), (7.4)

for all j, k ∈ Z.
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Define now a morphism τpj on Sp by a linear functional satisfying

τpj
def= 1

φ(p)ϕ
p
j , for all j ∈ Z. (7.5)

Then the pairs
(
Sp, τ

p
j

)
are well-determined C∗-probability spaces, satisfying

τpj (Pk) = δj,k
φ(p)ϕ

p
j (Pj) = δj,k

φ(p)

(
1
pj
− 1
pj+1

)

= δj,k


 1
p
(

1− 1
p

)



(

1
pj

(
1− 1

p

))
= δj,k
pj+1 ,

(7.6)

for all j, k ∈ Z.
Definition 7.1. We call the C∗-probability spaces

(
Sp, τ

p
j

)
, the j-th projection

(-semigroup C∗-)probability spaces, for all j ∈ Z.
Free distributional data on the j-th projection probability spaces

(
Sp, τ

p
j

)
is

characterized as follows.
Proposition 7.2. Let

(
Sp, τ

p
j

)
be the j-th projection probability space for j ∈ Z,

where τpj is the linear functional (7.5), for a fixed j ∈ Z. Then

τpj (Pnk ) = δj,k
pj+1 , for all j, k ∈ Z, (7.7)

for all n ∈ N.
Proof. The free distribution (7.7) of a projection Pk is obtained by (7.6), for all
k, j ∈ Z.

Now, we have all ingrediants to construct semicircular-like property, and semicir-
cularity induced byMp.

7.1. WEIGHTED-SEMICIRCULARITY AND SEMICIRCULARITY

Let (A,ϕ) be an arbitrary (topological, or pure-algebraic) ∗-probability space of
a ∗-algebra A, and a linear functional ϕ on A. Remember that ∗-algebra is an algebra
equipped with the adjoint (∗) on A. An element a of a ∗-algebra A is said to be
self-adjoint, if a∗ = a in A, where a∗is the adjoint of a.
Definition 7.3. Let a be a free random variable in a ∗-probability space (A,ϕ), and
let kn(. . .) be the free cumulant on A in terms of ϕ (e.g., see [26]). The given free
random variable a is said to be semicircular in (A,ϕ), if (i) a is self-adjoint, and (ii)
a satisfies

kn

(
a, a, . . . , a︸ ︷︷ ︸
n-times

)
=
{

1 if n = 2,
0 otherwise,

(7.8)

for all n ∈ N.
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Formore about free moments and free cumulants, see [26] and cited papers therein.
By the Möbius inversion of [26], one can get the equivalent definition of the semicir-
cularity (7.8) as follows: A free random variable a is semicircular in (A,ϕ), if and only
if (i) a is self-adjoint, and (ii) all odd free-moments of a vanish, equivalently,

ϕ
(
a2n−1) = 0, for all n ∈ N, (7.9)

and (iii) all even free-moments of a satisfy

ϕ(a2n) = cn, for all n ∈ N, (7.10)

where cn are the n-th Catalan number,

cn = 1
n+ 1

(
2n
n

)
= (2n)!
n!(n+ 1)! ,

for all n ∈ N (see [26]).
So, the free-moment formulas (7.9) and (7.10) characterize the semicircularity (7.8)

under self-adjointness.
Motivated by the definition (7.8) of semicircularity, we define the following

semicircular-like property, called the weighted-semicircularity as follows.

Definition 7.4. A free random variable a ∈ (A,ϕ) is said to be weighted-semicircular
in (A,ϕ) with weight t0 ∈ C \ {0} (in short, t0-semicircular), if a is self-adjoint in A,
and

kn(a, . . . , a) =
{
k2(a, a) = t0 if n = 2,
0 otherwise,

(7.11)

for all n ∈ N.
Of course, if t0 = 1, then 1-semicircularity of (7.11) is the same as the semicircu-

larity (7.8).

By the Möbius inversion of [26], if a free random variable a is t0-semicircular
in (A,ϕ), then

ϕ(a2m−1) = 0,

and

ϕ(a2m) =
∑

π∈NC(2m)

(∏

V ∈π
k|V |

(
a, . . . , a︸ ︷︷ ︸
|V |-times

))

=
∑

π∈NC2(2m)

(∏

V ∈π
k|V |

(
a, . . . , a︸ ︷︷ ︸
|V |-times

))
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where

NC2(2m) = {θ ∈ NC(2m) : ∀V ∈ π, |V | = 2}

by (7.11)

=
∑

π∈NC2(2m)

(∏

V ∈π
k2 (a, a)

)
=

∑

π∈NC2(2m)

(∏

V ∈π
t0

)

=
∑

π∈NC2(2m)

(
t
|π|
0

)

where |π| means the number of blocks of the partition π

=
∑

π∈NC2(2m)

tm0

since all noncrossing partitions π in NC2(2m) has 2m
2 -many blocks

= tm0


 ∑

π∈NC2(2m)

1


 = tm0 cm,

where cm means the m-th Catalan number, for all m ∈ N.
So, by the definition (7.11), one obtains that: if a ist0-semicircular in (A,ϕ), then

it is self-adjoint, and there exists t0 ∈ C, such that

ϕ(an) =
{
t

n
2
0 cn

2
if n is even,

0 if n is odd,
(7.12)

for all n ∈ N.

Theorem 7.5. Let a ∈ (A,ϕ) be a self-adjoint non-zero free random variable. Then
a is t0-semicircular in (A,ϕ) for some t0 ∈ C, if and only if

ϕ(an) =
{
t

n
2
0 cn

2
if n is even,

0 if n is odd,
(7.13)

for all n ∈ N.

Proof. The proof of the free-moment characterization (7.13) of the t0-semicircularity
is done by (7.11) and (7.12), via the Möbius inversion of [26].

(⇒) If a is t0-semicircular in (A,ϕ), then the free-moment formula (7.13) holds
by (7.12).
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(⇐) If a self-adjoint free random variable a satisfies the free-moment computa-
tion (7.13) in (A,ϕ), then

kn (a, . . . , a) =
∑

π∈NC(n)

(∏

V ∈π
ϕ
(
a|V |

))
µ(π, 1n), (7.14)

by the Möbius inversion, for all n ∈ N. Since all odd free-moments of a vanish by (7.13),
whenever a block V of any noncrossing partition contains odd-many elements, then
ϕ
(
a|V |

)
= 0, and hence, if a partition π contains a block V0 with odd-many elements,

then
∏

V ∈π
ϕ
(
a|V |

)
=
(
ϕ
(
a|V0|

))

 ∏

V ∈π,V 6=V0

ϕ
(
a|V |

)

 = 0.

Notice now that all noncrossing partitions π of NC(n) contains at least one odd
block in π, whenever n is odd in N. So, by (7.14), one obtains that

kn(a, . . . , a) = 0, whenever n is odd in N. (7.15)

Now, let k ∈ N, and observe

k2k(a, . . . , a) =
∑

π∈NC(2k)

(∏

V ∈π
ϕ
(
a|V |

))
µ(π, 12k)

=
∑

π∈NCe(2k)

(∏

V ∈π
ϕ
(
a|V |

))
µ(π, 12k),

(7.16)

where
NCe(2k) = {θ ∈ NC(2k) : ∀B ∈ θ ⇒ |B| is even}.

It is not difficult to check that the sub-lattice NCe(2k) of the lattice NC(2k) is
equivalent to NC(k), for all k ∈ N. Thus, the formula (7.16) goes to

k2k(a, . . . , a) =
∑

θ∈NC(k)

(∏

B∈θ
ϕ
(
a2|B|

))
µ(θ, 1k)

=
∑

θ∈NC(k)

(∏

B∈θ
t
|B|
0 c|B|

)
µ(θ, 1k)

=
∑

θ∈NC(k)

tk0

(∏

B∈θ
c|B|

)
µ(θ, 1k)

= tk0

( ∑

θ∈NC(k)

( ∏

B∈θ
c|B|

)
µ(θ, 1k)

)

=
{
t0 if k = 1,
0 otherwise,

(7.17)
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by (7.9) and (7.10) (which are equivalent to the semicircularity (7.8)). Indeed,

∑

θ∈NC(k)

(∏

B∈θ
c|B|

)
µ(θ, 1k) = 0,

whenever k 6= 1, because of the semicircularity.
Therefore, if the free-moment computation (7.13) holds, then a is t0-semicircular

in (A,ϕ), by (7.15) and (7.17).
Thus, by (⇒) and (⇐), a self-adjoint elemnet a is t0-semicircular in (A,ϕ), if and

only if it satisfies

ϕ(an) =
{
t

n
2
0 cn

2
if n is even,

0 if n is odd,
for all n ∈ N.

So, by the above free-momental characterization (7.13), our t0-semicircularity (7.11)
ce be re-stated.

7.2. TENSOR PRODUCT BANACH ∗-ALGEBRA LSp

Let Mp be the p-adic C∗-algebra containing its p-adic projection-semigroup
C∗-subalgebra Sp, and let τpk be linear functionals (7.5) on Sp, for all k ∈ Z. Through-
out this section, we fix k in Z, and the corresponding k-th C∗-probability space
(Sp, τ

p
k ). The formula (7.6) says that

τpk (Pj) = δk,j
pk+1 , for all j ∈ Z. (7.18)

Recall that
Sp
∗-iso= ⊕

j∈Z
(C · Pj) ∗-iso= C⊕|Z| inMp, (7.19)

by the structure theorem (6.4).
By (7.19), one can define a Banach-space operators cp and ap “acting on Sp” by

linear transformations satisfying

cp (Pj) = Pj+1, and ap (Pj) = Pj−1, (7.20)

acting on S, for all j ∈ Z.
By the very definition (7.20), these linear operators cp and ap are bounded (or

continuous) under the operator-norm of Sp, inherited from the C∗-norm on the p-adic
C∗-algebra Mp. So, they are well-defined Banach-space operators acting “on Sp.”
Definition 7.6. The Banach-space operators cp and ap on Sp in the sense of (7.20)
are called the (p-)creation, respectively, the (p-)annihilation on Sp. Define a new
Banach-space operator lp on Sp by

lp = cp + ap on Sp. (7.21)

We call this operator lp of (7.21), the (p-)radial operator on Sp.
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Let lp be the radial operator cp + ap of (7.21) on Sp, where cp and ap are the
creation, respectively, the annihilation of (7.20). Construct a Banach algebra Lp by

Lp = C[lp] in B(Sp), (7.22)

where B(Sp) means the (topological) operator space, consisting of all bounded (equiv-
alently, continuous) linear transformations on Sp, equipped with its operator-norm
‖ · ‖, defined by

‖T‖ = sup{‖Tx‖Sp
: x ∈ Sp, ‖x‖Sp

= 1},
where

‖x‖Sp
= sup{‖x(h)‖p : h ∈ Hp, ‖h‖p = 1},

giving the C∗-norm topology on Mp (and hence, on Sp), where ‖ · ‖p means the
Hilbert-space norm on the p-adic Hilbert space Hp.

By the definition (7.22) of the Banach algebra Lp, every element x of Lp is expressed
by

x =
∞∑

k=0
tkl

k
p , with tk ∈ C,

in Lp, with identity: l0p = 1Lp
, the identity operator on Lp, satisfying that:

1Lp
(Pj) = Pj , for all j ∈ Z.

Now, define the adjoint on Lp by

x∗ =
( ∞∑

k=0
tkl

k
p

)∗
def=

∞∑

k=0
tkl

k
p .

Then the Banach algebra Lp forms a Banach ∗-algebra.
Definition 7.7. Let Lp be the Banach ∗-algebra (7.22) in the operator space B(Sp).
We call it the (p-adic) radial (Banach-∗-)algebra on Sp.

Let Lp be the radial algebra on Sp. Construct now the tensor product Banach
∗-algebra LSp by

LSp = Lp ⊗C Sp, (7.23)
where ⊗C means the tensor product of Banach ∗-algebras.

Consider elements lkp ⊗ Pj of the tensor product Banach ∗-algebra LSp of (7.23),
for k ∈ N0 = N ∪ {0}, and j ∈ Z. By the very definition (7.23), such elements lkp ⊗ Pj
generate LSp. We concentrate on such generating operators lkp ⊗ Pj of LSp, later.

Define a morphism
Ep : LSp → Sp

by a linear transformation satisfying that:

Ep
(
lkp ⊗ Pj

)
=
(
pj+1)k+1

[k2 ] + 1
lkp(Pj), (7.24)
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for all k ∈ N0, j ∈ Z, where [k2 ] means the minimal integer greater than or equal to k
2 ,

for instance, [3
2

]
= 2 =

[4
2

]
.

By (7.19), if

T =
N∑

n=1

(
tnl

nk
p ⊗ snPj

)
∈ LSp with tn, sn ∈ C,

for N ∈ N, then

T =
N∑

n=1
(tnsn)

(
lnk
p ⊗ Pj

)
,

and hence,

Ep(T ) =
N∑

n=1
(tnsn)Ep

(
lnk
p ⊗ Pj

)
=

N∑

n=1
(tnsn)

(
pj+1)nk+1

[nk

2 ] + 1 lnk
p (Pj) , (7.25)

in S, by (7.24).
Note that, if Ql = lkl

p ⊗ Pjl
∈ LSp, for 4kl ∈ N0, jl ∈ Z, for l = 1, 2, then

Ep (Q1Q2) = Ep
(
lk1
p l

k2
p ⊗ Pj1Pj2

)

= Ep
(
lk1+k2
p ⊗ (δj1,j2Pj1

)

= δj1,j2Ep
(
lk1+k2
p ⊗ Pj1

)

= δj1,j2

(
pj+1)k1+k2+1

[
k1+k2

2
]

+ 1
lk1+k2
p (Pj1) .

(7.26)

Proposition 7.8. Let Ql = lkl
p ⊗ Pjl

∈ LSp, for kl ∈ N0, jl ∈ Z, for l = 1, 2. If Ep is
the morphism in the sense of (7.24), then

Ep (Q1Q2) = δj1,j2

(
pj+1)k1+k2+1

[
k1+k2

2
]

+ 1
lk1+k2
p (Pj1) . (7.27)

Proof. The proof of (7.27) is directly done by (7.26).

Now, consider how our radial operator lp = cp + ap acts on Sp. First, observe that
if cp and ap are the creation, respectively, the annihilation on Sp, then

cpap (Pj) = cp (ap(Pj)) = cp (Pj−1) = Pj , (7.28)

and
apcp (Pj) = ap (cp(Pj)) = ap (Pj+1) = Pj ,

for all j ∈ Z.
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Lemma 7.9. Let cp, ap be the creation, respectively, the annihilation on Sp. Then
cpap = 1Sp = apcp, (7.29)

where 1Sp
is the identity operator on Sp.

Proof. Since the C∗-algebra Sp is ∗-isomorphic to ⊕
j∈Z

(C · Pj) (by (7.19)), the for-

mula (7.29) holds by (7.28), under the linearity of cp and ap on S.

The formula (7.29) shows that the Banach-space operators cp and ap are commu-
tative on Sp. Therefore, one can get that

lnp = (cp + ap)n =
n∑

k=0

(
n
k

)
ckpa

n−k
p , (7.30)

with identities:
c0p = 1Sp

= a0
p,

for all n ∈ N, where
(
n
k

)
= n!
k!(n− k)! , for all n ∈ N, k ∈ N0.

Consider now the formulas (7.29) and (7.30) together. Assume first that n = 2m−1
is odd, for m ∈ N. Then

lnp = l2m−1
p =

2m−1∑

k=0

(
2m− 1
k

)
ckpa

2m−1−k
p ,

by (7.30). Thus, we can realize that l2m−1
p has vanishing 1Sp

-terms by (7.29), for all
m ∈ N. i.e.,

l2m−1
p does not contain 1Sp -terms, for m ∈ N. (7.31)

Now, suppose that n = 2m is even, for m ∈ N. Then

l2mp =
2m∑

k=0

(
2m
k

)
ckpa

2m−k
p

by (7.30)

=
((

2m
m

)
cmp a

m
p

)
+

∑

k 6=m∈{0,1,...,2m}

(
2m
k

)
ckpa

2m−k
p

=
(

2m
m

)(
1Sp

)m +
∑

k 6=m∈{0,1,...,2m}

(
2m
k

)
ckpa

2m−k
p

by (7.29)

=
(

2m
m

)
· 1Sp

+ [non-1Sp
-terms],
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i.e.,
l2mp contains the term

(
2m
m

)
· 1Sp

, for m ∈ N. (7.32)

Proposition 7.10. Let lp ∈ Lp be the radial operator on Sp. Then

l2m−1
p does not contain a 1Sp

-term, and (7.33)

l2mp contains its 1Sp
-term,

(
2m
m

)
· 1Sp

, (7.34)

for all m ∈ N.

Proof. The proofs of (7.33) and (7.34) are done by (7.31), respectively (7.32), with
help of (7.29) and (7.30).

Now, we have all ingredients to construct weighted-semicircular elements in LSp.

7.3. WEIGHTED-SEMICIRCULAR ELEMENTS Qj INDUCED BY H(Gp)

Let LSp be the tensor product Banach ∗-algebra Lp ⊗C Sp in the sense of (7.23), and
let Ep : LSp → Sp be the linear transformation (7.24). Throughout this section, Fix
an element

Qj = lp ⊗ Pj ∈ LSp, (7.35)
for some j ∈ Z.

Observe that
Qnj = (lp ⊗ Pj)n =

(
lnp ⊗ Pnj

)
=
(
lnp ⊗ Pj

)
, (7.36)

for all n ∈ N, because Pj are projections in Sp, for all j ∈ Z.
Consider that, if Qj ∈ LSp is in the sense of (7.35), for j ∈ Z, then

Ep
(
Qnj
)

= Ep
(
lnp ⊗ Pj

)
=
(
pj+1)n+1

[
n
2
]

+ 1
lnp (Pj) (7.37)

in Sp, by (7.36), for all n ∈ N.
Now, for each fixed j ∈ Z, define a linear functional τ0

p:j on LSp by

τ0
p:j = τpj ◦ Ep on LSp, (7.38)

where τpj is in the sense of (7.5) on Sp.
By the linearity of both τpj and Ep, the morphism τ0

p:j of (7.38) is a linear functional
on LSp. i.e.,

(
LSp, τ

0
p:j
)
forms a Banach ∗-probability space in the sense of [26] and [31].

By (7.37) and (7.38), one has that: if Qj is in the sense of (7.35), then

τ0
p:j
(
Qnj
)

= τpj
(
Ep(Qnj )

)
=
(
pj+1)n+1

[n2 ] + 1 τpj
(
lnp (Pj)

)
, (7.39)

for all n ∈ N.
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Theorem 7.11. Let Qj = lp ⊗ Pj ∈
(
LSp, τ

0
p:j
)
, for a fixed j ∈ Z. Then

Qj is p2(j+1)-semicircular in
(
LSp, τ

0
j

)
. Moreover,

τ0
j

(
Qnj
)

=
{(
pj+1)n cn

2
if n is even,

0 if n is odd,
(7.40)

for all n ∈ N.

Proof. Let us fix j ∈ Z, and the corresponding Banach ∗-probability space
(
LSp, τ

0
p:j
)
,

and let Qj be a generating operator lp ⊗ Pj of LSp. Then it is trivial that Qj is
self-adjoint in LSp. Indeed, one has

Q∗j = (lp ⊗ Pj)∗ =
(
l∗p ⊗ P ∗j

)
= (lp ⊗ Pj) = Qj .

Observe now that

τ0
p:j
(
Q2m−1
j

)
=
(
pj+1)(2m−1)+1

[ 2m−1
2
]

+ 1
τpj
(
l2m−1
p (Pj)

)

by (7.39)

=
(
pj+1)2m

[ 2m−1
2
]

+ 1
τpj

((2m−1∑

k=0

(
2m− 1
k

)
ckpa

2m−1−k
p

)
(Pj)

)

=
(
pj+1)2m

[ 2m−1
2
]

+ 1
τpj

(2m−1∑

k=0

(
2m− 1
k

)(
ckpa

2m−1−k
p (Pj)

)
)
,

(7.41)

for all m ∈ N.
Remark that the embedded parts

ckpa
2m−1−k
p (Pj) = Pj−2m+1+2k

of the summands in (7.41) cannot be Pj-terms by (7.33), for all k = 0, 1, . . . , 2m− 1.
Therefore, the formula (7.41) vanishes, for all m ∈ N.
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Now, consider that

τ0
p:j
(
Q2m
j

)
=
(
pj+1)2m+1

[ 2m
2
]

+ 1
τpj
(
l2mp (Pj)

)

by (7.39)

=
(
pj+1)2m+1

m+ 1 τpj

(( 2m∑

k=0

(
2m
k

)
ckpa

2m−k
p

)
(Pj)

)

=
(
pj+1)2m+1

m+ 1 τpj



(

2m
m

)
· Pj +

∑

k 6=m∈{0,1,...,2m}

(
2m
k

)
ckpa

2m−k
p (Pj)




by (7.34)

=
(
pj+1)2m+1

m+ 1 τpj

((
2m
m

)
· Pj + [non-Pj-terms]

)

=
(
pj+1)2m+1

m+ 1 τpj

((
2m
m

)
· Pj
)

=
(
pj+1)2m+1

m+ 1

(
2m
m

)
τpj (Pj)

=
(
pj+1)2m+1

m+ 1

(
2m
m

)(
1

pj+1

)
= 1
m+ 1

(
2m
m

)(
pj+1)2m

= cm
(
pj+1)2m =

(
(pj+1)2)m cm,

where cm means the m-th Catalan number, i.e.,

τ0
p:j
(
Q2m
j

)
= cm

(
pj+1)2m = cm

(
p2(j+1)

)m
, (7.42)

for all m ∈ N.
So, by the free-moment computations (7.41) and (7.42), the self-adjoint free random

variable Qj of our Banach ∗-probability space
(
LSp, τ

0
p:j
)
is a weighted-semicircular

element with its weight p2(j+1). i.e., there exists
(
pj+1)2 = p2(j+1) ∈ C,

such that
τ0
p:j
(
Q2m
j

)
= cm

(
p2(j+1)

)m
,

and
τ0
p:j
(
Q2m−1
j

)
= 0,

for all m ∈ N.
Therefore, the operator Qj is p2(j+1)-semicircular in

(
LSp, τ

0
p:j
)
, by (7.11)

and (7.13).
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One can construct the system

LSp =
{(

LSp, τ
0
p:j
)}
j∈Z (7.43)

of Banach ∗-probability spaces. Then, every Banach ∗-probability space
(
LSp, τ

0
p:j
)

in the family LSp of (7.43) has its p2(j+1)-semicircular element Qj = lp ⊗ Pj , for all
j ∈ Z. i.e., we have family

WSp =
{
Qj = lp ⊗ Pj ∈

(
LSp, τ

0
p,j

)}
j∈Z (7.44)

of weighted-semicircular elements in the family LSp of (7.43).
So, if k ∈ Z, then one obtains a corresponding p2(k+1)-semicircular element

Qk ∈ WSp in a Banach ∗-probability space
(
LSp, τ

0
p:k

)
∈ LSp, for all p ∈ P , satisfying

τ0
p:k (Qnk ) =

{
cn

2

(
p2(j+1))n

2 if n is even,
0 if n is odd,

equivalently,

kp.j,0n

(
Qj , Qj , . . . , Qj︸ ︷︷ ︸

n-times

)
=
{
p2(j+1) if n = 2,
0 otherwise,

for all n ∈ N, where kp,j,0n (. . .) is the free cumulant with respect to the linear functional
τ0
p:j on LSp (in the sense of [26]).

The following theorem re-prove an equivalent free-distributional data of (7.40),
in terms of free cumulant. In fact, the following theorem must hold true by (7.40),
and by the Möbius inversion of [26]. However, we provide an independent proof of the
theorem below.
Theorem 7.12. Let Qj = lp⊗Pj ∈

(
LSp, τ

0
p:j
)
be given as in (7.35), for j ∈ Z. Then

kp.j,0n

(
Qj , Qj , . . . , Qj︸ ︷︷ ︸

n-times

)
=
{
p2(j+1) if n = 2,
0 otherwise,

(7.45)

for all n ∈ N.
Therefore, Qj is a p2(j+1)-semicircular in

(
LSp, τ

0
p,j

)
, for j ∈ Z.

Proof. Let Qj be a self-adjoint free random variable (7.35) of the Banach ∗-probability
space

(
LSp, τ

0
p,j

)
, for a fixed j ∈ Z. Then

τ0
p:j
(
Q2m
j

)
= cm

(
pj+1)2m , and τ0

j

(
Q2m−1
j

)
= 0, (7.46)

for all m ∈ N, by (7.40).
By the Möbius inversion of [26], one has

kp,j,0n (Qj , Qj , . . . , Qj) =
∑

π∈NC(n)

(∏

V ∈π
τ0
p:j

(
Q
|V |
j

))
µ(π, 1n) (7.47)

for all n ∈ N.



698 Ilwoo Cho and Palle E.T. Jorgensen

Suppose now that n in (7.47) is odd. Then every partition π in the lattice NC(n)
consisting of all noncrossing partitions over {1, . . . , n} contains at least one odd block
V0 in π, i.e., there always exists at least one block V0 of π has odd-many elements.
Then

τ0
p:j

(
Q
|V0|
j

)
= 0,

and hence, for a partition π,
∏

V ∈π
τ0
p:j

(
Q
|V |
j

)
=
(
τ0
p:j

(
Q
|V0|
j

))( ∏

V ∈π,V 6=V0

τ0
j

(
Q
|V |
j

))
= 0,

whenever n is odd in N. Since π is arbitrary in NC(n), the formula (7.47) vani-
shes, whenever n is odd, i.e.,

kp,j,0n (Qj , . . . , Qj) = 0, if n is odd. (7.48)

Consider now that, if n = 2, then

kp,j,02 (Qj , Qj) = τ0
p:j
(
Q2
j

)
− τ0

p:j (Qj) τ0
p:j (Qj)

= τ0
p:j
(
l2p ⊗ Pj

)
− τ0

p:j (Qj)2 = τ0
j

(
l2p ⊗ Pj

)

= τpj
(
Ep(l2p ⊗ Pj)

)
=
(
pj+1)2+1

τpj (Pj)

=
(
pj+1)2 = p2(j+1),

by (7.47), i.e., one obtains that

kp,j,02 (Qj , Qj) = p2(j+1). (7.49)

Let m > 1 in N. Then

kp,j,02m (Qj , . . . , Qj) =
∑

π∈NCe(2m)

(∏

V ∈π
τ0
p:j

(
Q
|V |
j

))
µ(π, 12m)

=
∑

π∈NCe(2m)

(∏

V ∈π

(
c |V |

2

(
pj+1)|V |)

)
µ(π, 12m)

=
∑

π∈NCe(2m)

((∏

V ∈π
c |V |

2

)
(
pj+1)2m

)
µ(π, 12m)

=
(
pj+1)2m


 ∑

π∈NCe(2m)

(∏

V ∈π
c |V |

2

)
µ(π, 12m)


 ,

(7.50)

by (7.47) and (7.49), where

NCe(2m) = {θ ∈ NC(2m) : B ∈ θ ⇐⇒ |B| is even}.
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By the semicircularity (7.9) and (7.10), we know that

∑

π∈NCe(2m)

(∏

V ∈π
c |V |

2

)
µ(π, 12m) = 0, (7.51)

whenever m > 1 in N. Thus, the formula (7.50) vanishes whenever m > 1.
Thus, we have

if m > 1 in N, then kj,02m (Qj , . . . , Qj) = 0, (7.52)

by (7.50) and (7.51).
Therefore, by (7.48), (7.49) and (7.52), we obtain

kp,j,0n (Qj , . . . , Qj) =
{
p2(j+1) if n = 2,
0 otherwise,

for all n ∈ N.
It guarantees that the elementQj is p2(j+1)-semicircular in

(
LSp, τ

0
j

)
, for all j ∈ Z,

by (7.11) and (7.13).

7.4. SEMICIRCULAR ELEMENTS INDUCED BYMp

In this section, we consider semicircular elements in the Banach ∗-probability spaces
(LSp, τ

0
p:j), for j ∈ Z. We will use the same notations used in Section 7.3. As we have

seen in (7.40) and (7.45), the generating operators

Qj = lp ⊗ Pj of LSp

are p2(j+1)-semicircular in the Banach ∗-probability space
(
LSp, τ

0
p:j
)
, for each j ∈ Z.

Throughout this section, let’s fix j ∈ Z, and the corresponding Banach ∗-probability
space

(
LSp, τ

0
p:j
)
. Define now an operator Θj of LSp by a free random variable,

Θj = 1
pj+1Qj ∈

(
LSp, τ

0
p:j
)
. (7.53)

Since pj+1 ∈ Q, the quantity 1
pj+1 ∈ Q, too, in R, and hence, the operator Θj is

self-adjoint in LSp, by the self-adjointness of Qj .
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Observe now that, if Θj is a self-adjoint operator (7.53) in LSp, then

kp,j,0n

(
Θj ,Θj , . . . ,Θj︸ ︷︷ ︸

n-times

)
=

∑

π∈NC(n)

(∏

V ∈π
τ0
p:j

(
Θ|V |j

))
µ(π, 1n)

=
∑

π∈NC(n)

(∏

V ∈π

(
1

pj+1

)|V |
τ0
p:j

(
Q
|V |
j

))
µ(π, 1n)

=
∑

π∈NC(n)

(
1

pj+1

)n(∏

V ∈π
τ0
p:j

(
Q
|V |
j

))
µ(π, 1n)

=
(

1
pj+1

)n

 ∑

π∈NC(n)

(∏

V ∈π
τ0
p:j

(
Q
|V |
j

))
µ(π, 1n)




=
(

1
pj+1

)n
kp,j,0n


Qj , Qj , . . . , Qj︸ ︷︷ ︸

n-times


 ,

(7.54)

for all n ∈ N.
Remark that the above formula (7.54) can be directly obtained by the bimodule-map

property of free cumulants. i.e.,

kp,j,0n (Xj , . . . , Xj) = kp,j,0n

(
1

pj+1Qj , . . . ,
1

pj+1Qj

)

=
(

1
pj+1

)n
kp,j,0n (Qj , . . . , Qj) ,

for all n ∈ N (e.g., see [26]).
Lemma 7.13. Let Θj = 1

pj+1Qj = 1
pj+1 (lp ⊗ Pj) be in the sense of (7.53) in our

Banach ∗-probability space
(
LSp, τ

0
p:j
)
, for a fixed j ∈ Z. Then

kp,j,0n (Θj , . . . ,Θj) =
(

1
pj+1

)n
kp,j,0n (Qj , . . . , Qj), (7.55)

for all n ∈ N.
Proof. The proof of the free-cumulant formula (7.55) is done by (7.54).

The above free-cumulant formula (7.55) shows that the free-distributional data
of Θj are determined by those of Qj .
Theorem 7.14. Let Θj be in the sense of (7.53) in LSp, for j ∈ Z. Then it is
semicircular in

(
LSp, τ

0
p:j
)
, for j ∈ Z.

Proof. Observe that

kp,j,0n (Θj , . . . ,Θj) =
(

1
pj+1

)n
kp,j,0n (Qj , . . . , Qj)
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by (7.55)

=





(
1

pj+1

)2
kp,j,02 (Qj , Qj) if n = 2,(

1
pj+1

)n
· 0 = 0 otherwise,

for all n ∈ N, by the p2(j+1)-semicircularity (7.45), or (7.40) of Qj , for j ∈ Z.
So, we obtain that

kp,j,0n (Θj , . . . ,Θj) =





(
1

pj+1

)2
p2(j+1) = 1 if n = 2,

0 otherwise,
(7.56)

for all n ∈ N.
Therefore, by (7.8) and (7.56), the self-adjoint operators Θj are semicircular

in
(
LSp, τ

0
p:j
)
, for all j ∈ Z.
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