PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Imprints of Natural Phenomena and Human Activity Observed During 10 Years of ELF Magnetic Measurements at the Hylaty Geophysical Station in Poland

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Current human activity produces strong electromagnetic pollution. The power spectrum in the extremely low frequency (ELF, 3-3000 Hz) range is mainly polluted by anthropogenic narrow spectral lines at 16.66, 50, and 60 Hz and their harmonics. Meanwhile, signatures connected with natural phenomena appearing in the Earth’s atmosphere, ionosphere and magnetosphere are also observed in the same frequency range. This paper presents the amplitude behaviour of the anthropogenic lines in the years 2005-2014 based on the 10 years of activity of the Hylaty station situated in southeast Poland. The analysis includes, i.a., an assessment of the correctness of the choice of the Bieszczady mountains as a location for the installation of an ELF station for long-term geophysical and climatological studies.
Czasopismo
Rocznik
Strony
2591--2608
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Institute of Physics, Jagiellonian University, Kraków, Poland
Bibliografia
  • Balser, M., and C.A. Wagner (1960), Observations of Earth-ionosphere cavity resonances, Nature 188, 4751, 638-641, DOI: 10.1038/188638a0.
  • Beggan, C.D., T. Gabillard, A. Swan, S. Flower, and A. Thomson (2012), Investigation of global lightning using Schumann resonances measured by high frequency induction coil magnetometers in the UK. In: AGU Fall Meeting, Lightning and Atmospheric Electricity in Thunderstorms V, San Francisco, USA, AE23B-0333.
  • Bezrodny, V., O. Budanov, A. Koloskov, M. Hayakawa, V. Sinitsin, Y. Yampolski, and V. Korepanov (2007), The ELF band as a possible spectral window for seismo-ionospheric diagnostics, Sun Geosphere 2, 2, 88-95.
  • Bösinger, T., C. Haldoupis, P.P. Belyaev, M.N. Yakunin, N.V. Semenova, A.G. Demekhov, and A.V. Angelopoulus (2002), Spectral properties of the ionospheric Alfvén resonator observed at a low-latitude station (L = 1.3), J. Geophys. Res. 107, A10, SIA4-1 – SIA4-9, DOI: 10.1029/2001JA005076.
  • Christian, H.J., R.J. Blakeslee, D.J. Boccippio, W.L. Boeck, D.E. Buechler, K.T. Driscoll, S.J. Goodman, J.M. Hall, W.J. Koshak, D.M. Mach, and M.F. Stewart (2003), Global frequency and distribution of lightning as observed from space by the optical transient detector, J. Geophys. Res. 108, D1, 4005, DOI: 10.1029/2002JD002347.
  • Dyrda, M., A. Kulak, J. Mlynarczyk, M. Ostrowski, J. Kubisz, A. Michalec, and Z. Nieckarz (2014), Application of the Schumann resonance spectral decomposition in characterizing the main African thunderstorm center, J. Geophys. Res. Atmos. 119, 23, 13338-13349, DOI: 10.1002/ 2014JD022613.
  • Engebretson, M.J., M.R. Lessard, J. Bortnik, J.C. Green, R.B. Horne, D.L. Detrick, A.T. Weatherwax, J. Manninen, N.J. Petit, J.L. Posch, and M.C. Rose (2008), Pc1-Pc2 waves and energetic particle precipitation during and after magnetic storms: Superposed epoch analysis and case studies, J. Geophys. Res. 113, A1, A01211, DOI: 10.1029/2007JA012362.
  • Fraser-Smith, A.C., and R.A. Helliwell (1994), Overview of the Stanford University/ Office of Naval Research ELF/VLF radio noise survey. In: J.M. Goodman (ed.), Proc. 1993 Ionospheric Effects Symposium, SRI International, Arlington, Virginia, 502-509.
  • Frey, S. (2012), Railway Electrification System and Engineering, White Word Publications.
  • Fullekrug, M. (2005), Detection of thirteen resonances of radio waves from particularly intense lightning discharges, Geophys. Res. Lett. 32, 13, L13809, DOI: 10.1029/2005GL023028.
  • Hebden, S.R., T.R. Robinson, D.M. Wright, T. Yeoman, T. Raita, and T.A. Bösinger (2005), Quantitative analysis of the diurnal evolution of ionospheric Alfvén resonator magnetic resonance features and of changing IAR parameters, Ann. Geophys. 23, 5, 1711-1721.
  • Hobara, Y., N. Iwasaki, T. Hayashida, T. Tsuchiya, E.R. Williams, M. Sera, Y. Ikegami, and M. Hayakawa (2000), New ELF observation site in Moshiri, Hokkaido, Japan, and the results of preliminary data analysis, J. Atmos. Electr. 20, 2, 99-109.
  • Hughes, T.P. (1983), Networks of Power: Electrification in Western Society 1880- 1930, The Johns Hopkins University Press, Baltimore.
  • Jankowski, J., and C. Sucksdorff (1996), Guide for Magnetic Measurements and Observatory Practice, International Association of Geomagnetism and Aeronomy, Warsaw, Poland.
  • Kangas, J., A. Guglielmi, and O. Pokhotelov (1998), Morphology and physics of short-period magnetic pulsations, Space Sci. Rev. 83, 3, 435-512, DOI: 10.1023/A:1005063911643.
  • Kulak, A., S. Zieba, S. Micek, and Z. Nieckarz (2003), Solar variations in extremely low frequency propagation parameters: 1. A two-dimensional telegraph equation (TDTE) model of ELF propagation and fundamental parameters of Schumann resonances, J. Geophys. Res. 108, A7, 1270, DOI: 10.1029/ 2002JA009304.
  • Kulak, A., J. Mlynarczyk, S. Zieba, S. Micek, and Z. Nieckarz (2006), Studies of ELF propagation in the spherical shell cavity using a field decomposition method based on asymmetry of Schumann resonance curves, J. Geophys. Res. 111, A10, A10304, DOI: 10.1029/2005JA011429.
  • Kulak, A., J. Kubisz, S. Klucjasz, A. Michalec, J. Mlynarczyk, Z. Nieckarz, M. Ostrowski, and S. Zieba (2014), Extremely low frequency electromagnetic field measurements at the Hylaty station and methodology of signal analysis, Radio Sci. 49, 6, 361-370, DOI: 10.1002/2014RS005400.
  • L’Abbate, A., G. Fulli, F. Starr, and S.D. Peteves (2007), Distributed power generation in Europe: Technical issues for further integration, JCR Sci. Tech. Reports, European Commission, EUR 23234.
  • Love, J., and A. Chulliat (2013), An international network of magnetic observation, EOS 94, 42, 373-384. Neidhofer, G. (2011), 50-Hz frequency [history]: how the standard emerged from a European jungle, IEEE Power Energy Mag. 9, 4, 66-81, DOI: 10.1109/ MPE.2011.941165.
  • Neska, M., and G. Sátori (2006), Schumann resonance observation at Polish Polar Station at Spitsbergen and in Central Geophysical Observatory in Belsk, Poland, Prz. Geofiz. 3-4, 189-198 (in Polish).
  • Nieckarz, Z., S. Zięba, A. Kułak, and A. Michalec (2009), Study of the periodicities of lightning activity in three main thunderstorm centers based on Schumann resonance measurements, Month. Weath. Rev. 137, 12, 4401-4409, DOI: 10.1175/2009MWR2920.1.
  • Odzimek, A., A. Kulak, A. Michalec, and J. Kubisz (2006), An automatic method to determine the frequency scale of the ionospheric Alfven resonator using data from Hylaty station, Poland, Ann. Geophys. 24, 8, 2151-2158.
  • Price, C., M. Finkelstein, B. Starobinets, and E. Williams (1999), A new Schumann resonance station in the Negev desert for monitoring global lightning activity. In: Proc. 11th Int. Conf. on Atmospheric Electricity, 7-11 June 1999, Guntersville, Alabama, NASA, Marshall Space Flight Center, Alabama, 695-697.
  • Salazar, A. (2006), Energy propagation of thermal waves, Eur. J. Phys. 27, 6, 1349- 1355, DOI: 10.1088/0143-0807/27/6/009.
  • Sátori, G., J. Szendroi, and J. Vero (1996), Monitoring Schumann resonances – I. Methodology, J. Atmos. Sol. Terr. Phys. 58, 13, 1475-1481, DOI: 10.1016/0021-9169(95)00145-X.
  • Sátori, G., E.R. Williams, and V. Mushtak (2005), Response of the Earth-ionosphere cavity resonator to the 11-year solar cycle in X-radiation, J. Atmos. Sol. Terr. Phys. 67, 6, 553-562, DOI: 10.1016/j.jastp.2004.12.006.
  • Sátori, G., M. Neska, E. Williams, and J. Szendroi (2007), Signatures of the daynight asymmetry of the Earth-ionosphere cavity in high time resolution Schumann resonance records, Radio Sci. 42, 2, RS2S10, DOI: 10.1029/ 2006RS003483.
  • Schumann, W.O. (1952), On the free oscillation of a conducting sphere, which is surrounded by an air layer and an ionospheric shell, Z. Naturforsch. 7a, 149-154 (in German).
  • Semenova, N.V., and A.G. Yahnin (2008), Diurnal behaviour of the ionospheric Alfven resonator signatures as observed at high latitude observatory Baentsburg, Ann. Geophys. 26, 8, 2245-2251.
  • Shalimov, S., and T. Bösinger (2008), On distant excitation of the ionospheric Alfvén resonator by positive cloud-to-ground lightning discharges, J. Geophys. Res. 113, A2, A02303, DOI: 10.1029/2007JA012614.
  • Surkov, V.V., Y. Matsudo, M. Hayakawa, and S.V. Goncharov (2010), Estimation of lightning and sprite parameters based on observation of sprite-producing lightning power spectra, J. Atmos. Sol. Terr. Phys. 72, 5-6, 448-456, DOI: 10.1016/j.jastp.2010.01.001.
  • Turbitt, C., J. Matzka, J. Rasson, B. St-Louis, and D. Stewart (2013), An instrument performance and data quality standard for intermagnet one-second data exchange. In: Proc. 15th IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing, No. 03/13, 186-188.
  • Williams, E.R. (1992), The Schumann resonance: A global tropical thermometer, Science 256, 5060, 1184-1187, DOI: 10.1126/science.256.5060.1184.
  • Williams, E.R. (2005), Lightning and climate: A review, Atmos. Res. 76, 1-4, 272- 287, DOI: 10.1016/j.atmosres.2004.11.014.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb5e15dc-d71a-4b48-bae5-8db9378bcf10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.