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1. Introduction

Multivalued maps reconstructed from sampled data often do not have a continuous
selector. As a consequence, the algorithms constructing multivalued maps presented
in [8] do not guarantee the acyclicity of values. This is because the union of a family
of cubes may not be acyclic unless the cubes share a common point.

The modification of the algorithm which consists in replacing the union by, for
example, its convex hull or other desirable acyclic set requires the use of multivalued
map defined separately on cubes of each dimension. Unfortunately, the available
algorithms computing maps induced in homology are based on some reductions which
apply only to multivalued maps defined on cubes of maximal dimension.

In this paper we show how the problem of algorithmic computation of the Conley
index with no continuous selector may be reduced to the analogous problem but with
continuous selector. This, in particular, facilitates the use of the available algorithms
and software. The proposed approach consists in mapping every cube of the original
space into a cube of maximal dimension. This results in a new multivalued map
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which is admissible in the available software [10, CHomP]. What needs to be proved
and what is proved in this paper is the fact that the outcome of the algorithm for
the new map applies also to the original map. In consequence, we are able to use
the existing software to compute index maps and Conley index of multivalued maps
without a continuous selector. The theory needed to justify this is based on the
commutativity property of Conley index for cubical multivalued maps.

The paper is organised as follows. Section 2. presents basic notions on cubical
sets and maps. In Section 3. we define the mappings needed to link the original and
modified multivalued map. We also introduce the notion of the extended boundary
and study its properties. Finally, Section 4. provides the description of the dynamics
of both systems and the proof that the Conley indices of these systems are related by
the commutativity property.

2. Preliminaries

In this note we use the following notions. By a cuboid we mean a subset B ⊂ Rn of
the form

J1 × . . .× Jn, (1)

where each Ji satisfies Ji = [ai, bi] or Ji = {ai} for some ai, bi ∈ R, ai < bi. Such set
Ji is called an interval. We say that an interval J ⊂ R is elementary if J = [l, l + 1]
or J = {l} for some l ∈ Z. By an elementary cube or briefly a cube we mean a cuboid
Q where each Ji is elementary.

The dimension of cuboid B is the number of intervals of positive length in (1). It
is denoted by dimB. In particular, if Q is a cube, then dimQ is equal to the number
of intervals of length 1 in (1).

A set X ⊂ Rn is said to be cubical, if it can be written as a finite union of cubes.
Note that every cubical set is compact. Let

Kn := {J1 × . . .× Jn ⊂ Rn | Ji = [l, l + 1] or Ji = {l} for some l ∈ Z}

denote the set of all cubes in Rn and

K :=

∞⋃
k=1

Kk

be the set of all cubes. For a cubical set X we set

Kd(X) := {Q ∈ K | Q ⊂ X, dimQ = d}

and
K(X) := {Q ∈ K | Q ⊂ X}.

In particular, if X ⊂ Rn and n ∈ N is fixed, then we write Kmax(X) := Kn(X). The
set X ⊂ Rn is a full cubical set if X =

⋃
Kmax(X).
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Let X and Y be topological spaces. A map of the form F : X → P(Y ), where
P(Y ) is the power set of Y , is called a multivalued map. Such a multivalued map is
denoted by F : X ⊸ Y . The multivalued map F is said to be upper semicontinuous
(u.s.c.), if for any closed set B ⊂ Y the set

F−1(B) := {x ∈ X | F (x) ∩B ̸= ∅}

is closed in X, and it is said to be lower semicontinuous (l.s.c), if for any open set
U ⊂ Y the set F−1(U) is open in X. The set F−1(B) itself is called the large
counter image of B. Let A ⊂ X. By the image of A under F we mean the set
F (A) :=

⋃
{F (x) | x ∈ A}.

With each cube Q = J1 × . . . × Jk ∈ K we associate a cell, that is the set of the
form

Q̊ := J̊1 × . . .× J̊k,

where

J̊i :=

{
(l, l + 1) if Ji = [l, l + 1],
{l} if Ji = {l}.

Assume X and Y are cubical sets. A multivalued map F : X ⊸ Y is called cubical, if
for every x ∈ X the set F (x) is cubical and for every Q ∈ K(X) the multivalued map
F |Q̊ is constant. More details on cubical sets and maps can be found in [5].

3. Proper Cubes and Extended Boundary

In this section we define the maps which allow to connect two cubical spaces and the
multivalued maps defined on these cubical spaces.

Let θ : R → R be given by

θ(x) :=

{
x− k+1

2 for x ∈ [k, k + 1] and k ∈ 2Z+ 1,
k
2 for x ∈ [k, k + 1] and k ∈ 2Z. (2)

The following proposition is straightforward.

Proposition 1. Map θ is continuous and

θ([k, k + 1]) =

{
[k−1

2 , k+1
2 ] if k ∈ 2Z+ 1,

{k2} if k ∈ 2Z.

Fix n ∈ N and consider function g : Rn → Rn given by

g(x1, . . . , xn) := (θ(x1), . . . , θ(xn)). (3)

It follows from Proposition 1 that g is continuous and maps every cube Q ∈ Kn onto
cube g(Q) ∈ Kn.

The following proposition shows the form of preimage of a singleton under g.
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Figure 1. Maps φf : X ⊸ X̄ and f : X̄ → X, where X, X̄ ⊂ R.

Proposition 2. For every x ∈ Rn the set g−1(x) is a cuboid.

Proof. Note that for y ∈ R we have

θ−1(y) =

{
{y + k + 1} for y ∈ (k, k + 1), k ∈ Z,
[2y, 2y + 1] for y ∈ Z.

Therefore, g−1(x) = J1 × . . . × Jn, where each Ji is an interval. The conclusion
follows.

In the sequel, given a full cubical set X ⊂ Rn, we consider it as a topological space
with topology induced from Rn and we write X̄ := g−1(X). Then f : X̄ → X defined
by f(x) := g(x) for x ∈ X̄ is a continuous surjection. Note also that f is closed,
because every continuous map from compact space to Hausdorff space is closed.

Let φf : X ⊸ X̄ be the multivalued map defined by φf (x) := f−1(x) for x ∈ X
(cf. [4, Example 13.6]). One can easily verify that the image of a cubical subset of
X under φf is a cubical subset of X̄ (cf. Proposition 2). Therefore, X and X̄ are
compact ANRs.

The intuition behind the multivalued map φf is to extend all cubes from the
space X to maximal dimensional cubes in the space X̄. On the other hand, the map
f enables us to relate cube in X̄ to the corresponding cubes in X (cf. Figure 1).

Recall that a topological space is contractible if it has the homotopy type of a one-
point space. A subset of Rn is acyclic if it has (co)homology of the one-point space.
Clearly, contractibility implies acyclicity. Let A,B be compact ANRs. Recall that
a compact set C ̸= ∅ in A is said to be cell-like in A if C is contractible in every
neighbourhood of C in A. A map h : A→ B is called a cell-like map if h is a closed,
continuous surjection and for each y ∈ B the preimage h−1(y) is cell-like in A (cf.
[11]). We will utilise these notions in the following lemma.

Lemma 3. Let F : X ⊸ X be an upper semicontinuous cubical multivalued map with
contractible values and let X̄ = g−1(X). Then

F̄ := φf ◦ F ◦ f : X̄ ⊸ X̄ (4)

is an upper semicontinuous cubical multivalued map with contractible values.
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Proof. Since f is closed, by [4, Proposition 14.6], the map φf is u.s.c. By [4, Propo-
sition 14.10], the composition φf ◦F ◦ f is an u.s.c. multivalued map. One can easily
verify that the image of a cubical subset of X under φf is a cubical subset of X̄.
Hence, by the definition of g, the sets F (f(x̄)) and F̄ (x̄) are cubical for any x̄ ∈ X̄.
Moreover, for each u, v ∈ Q̊ with Q ∈ K(X̄) we have F̄ (u) = F̄ (v), because F is
cubical. Hence F̄ is cubical.

We still need to prove that F̄ has contractible values. Since f is a single-valued
map, it suffices to prove that φf ◦ F has contractible values. Since for each x ∈ X
sets B := F (x) and A := (φf ◦ F )(x) are cubical, they are both compact ANRs.
Note that the map f |A : A → B is a cell-like map. Indeed, for every y ∈ B, the
preimage f |−1

A (y) is a cuboid, that is it is nonempty compact set contractible in
every its neighbourhood in A. By [6, Theorem of Section 4.2.], map f |A is homotopy
equivalence. Thus, (φf ◦ F )(x) is contractible for each x ∈ X.

Note that the surjectivity of f implies that f ◦φf = idX . For further reference we
state the simple consequence of this as the following proposition.

Proposition 4. For any x ∈ X̄ the equality f(F̄ (x)) = F (f(x)) holds.

Proof. Obviously, f(F̄ (x)) = f(φf (F (f(x)))) = F (f(x)).
Now, let us consider a special class of multivalued mappings which allows com-

putations of Conley index by the means of [8]. Let X ⊂ Rn be full cubical and
H : X ⊸ X be u.s.c., cubical multivalued map with acyclic values such that for each
P ∈ K(X)

H(P̊ ) ⊃
⋃

{H(Q̊) | P ⊂ Q, Q ∈ Kmax(X)}.

Amultivalued mapH is called admissible if there exists a multivalued mapG : X ⊸ X
such that following conditions are satisfied:

(a) G(P̊ ) =
⋂
{H(Q̊) | P ⊂ Q, Q ∈ Kmax(X)} for each P ∈ K(X),

(b) values of G are acyclic.

In other words, for admissible map H there exists a lower semicontinuous multivalued
map with acyclic values which is, in fact, its multivalued selector. For this multivalued
selector there exists continuous selector. Thus, map H has a continuous selector. For
details see [5, Section 6.2].

It turns out that the multivalued map F̄ : X̄ ⊸ X̄ given by (4) is admissible. The
proof of the following proposition is postponed until the necessary definitions will be
introduced.

Proposition 5. F̄ : X̄ ⊸ X̄ is admissible.

Let n ∈ N be fixed. We often use the set In := {1, . . . , n}. We call the cube
P ∈ Kn proper if dim f(P ) = dimP = n. Note that for C := {P ∈ Kn | dim f(P ) =
dimP = n}, the function f restricted to

⋃
P∈C intP is an injection.

Now we show a few properties of proper cubes.

Lemma 6. Assume that P ∈ Kmax(X̄) is a proper cube. Then

f(X̄) \ f(intP ) = f(X̄ \ intP ).
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Proof. Since

f(X̄) = f(X̄ \ intP ∪ intP ) = f(X̄ \ intP ) ∪ f(intP ),

we have the inclusion f(X̄) \ f(intP ) ⊂ f(X̄ \ intP ).
In order to prove the inclusion in the opposite direction notice that f(X̄ \ intP ) ⊂

f(X̄). Take a y ∈ f(X̄ \ intP ) and suppose that y /∈ f(X̄) \ f(intP ). This means
that there are an x′ ∈ X̄ \ intP and an x ∈ intP such that f(x′) = f(x) = y. Since
X̄ is full cubical and P ∈ Kmax(X̄), one can easily check that

X̄ \ intP =
⋃

Kmax(X̄ \ intP ).

Hence, x′ ∈ Q for some Q ∈ Kmax(X̄ \ intP ).
Observe that for any u, u′ ∈ R such that u ̸= u′

θ(u) = θ(u′) ⇒ ∃p ∈ Z such that u, u′ ∈ [2p, 2p+ 1]. (5)

Since x ̸= x′, there is a j ∈ In such that xj ̸= x′j . Since f(x) = f(x′), we have
θ(xj) = θ(x′j). Therefore, we get from (5) that there exists a p ∈ Z such that
xj ∈ [2p, 2p+ 1]. But, x ∈ intP and P is proper. This means that

intP = (2k1 − 1, 2k1)× . . .× (2kn − 1, 2kn)

and xj ∈ (2kj − 1, 2kj), which contradicts xj ∈ [2p, 2p+ 1].

Lemma 7. Assume that P,Q ∈ Kmax(X̄) are cubes such that P is a proper cube and
P ̸= Q. If P ∩Q ̸= ∅ then f(Q) ⊂ bd f(P ).

Proof. Let P = [a1, b1]× . . .× [an, bn]. Then P ∩Q ̸= ∅ implies that Q = [a1+u1, b1+
u1]× . . .× [an+un, bn+un] for some ui ∈ {−1, 0, 1} and i ∈ In. There exists at least
one i ∈ In such that ui ̸= 0, because P ̸= Q. Fix such an i. Since P is proper, each
ai is odd. In particular

f(P ) = [
a1 − 1

2
,
a1 + 1

2
]× . . .× [

an − 1

2
,
an + 1

2
]. (6)

Therefore, ui ̸= 0 implies ai+ ui ∈ 2Z and fi(xi) =
ai+ui

2 for each x = (x1, . . . , xn) ∈
Q. Since fi(xi) ∈ bd([ai−1

2 , ai+1
2 ]), we get from (6) that f(Q) ⊂ bd f(P ).

Let Q ∈ Kn and dimQ = n. By I ′(Q) ⊂ In we mean the set of all the indices for
which the components of f restricted to Q are constant. Let I ′′(Q) := In\I ′(Q). Note
that for each i ∈ I ′′(Q) the ith component of f restricted to Q is injective. Moreover,
Q is proper if and only if I ′(Q) = ∅. One can also easily verify that dim f(Q) = k if
and only if card I ′′(Q) = k.

Now we get back to the proof of Proposition 5.

Proof. Let G : X̄ ⊸ X̄ be a multivalued map defined as in point (a) of definition of
admissibility. Such a map exists and it is lower semicontinuous cubical map (cf. [5,
Section 6.2]).

We need to prove that values of G are acyclic. Let x ∈ X̄ and Is(x) := {i ∈
In | xi ∈ Z}. Since for Is(x) = ∅ we have G(x) = F̄ (Q̊) for some Q ∈ Kmax(X̄) and
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the conclusion is clear, consider the case Is(x) ̸= ∅. Let G(x) = F̄ (Q̊1)∩ . . .∩ F̄ (Q̊k).
Each Qi = J i1× . . .×J in ∈ Kmax(X̄) and J ij = [aij , b

i
j ], where either a

i
j = xj or b

i
j = xj

for every j ∈ Is(x). Together with the assumption that X is full cubical this means
that k = 2card Is(x) and all cubes Qi differ only at intervals indexed by Is(x).

Note that if for some j ∈ Is(x) the index j ∈ I ′(Qi) for some Qi, then for Ql = J i1×
. . .×J lj×. . .×J in we have j ∈ I ′′(Ql) = In\I ′(Ql). In that way one can find Qm where
m ∈ {1, . . . , k}, such that for each j ∈ Is(x) the restriction fj |Jm

j
is not constant. It is

easy to see that for every i = 1, . . . , k we have I ′(Qi) \ Is(x) = I ′(Qm) \ Is(x). Hence,
I ′(Qm) ⊂ I ′(Qi) for each i = 1, . . . , k. Therefore, f(Qm) ⊃ f(Qi) for i = 1, . . . , k.

Since F is u.s.c, we have F ( ˚f(Qm)) ⊂ F ( ˚f(Qi)). One can also easily check that for

any Q ∈ Kmax(X̄) the equality ˚f(Q) = f(Q̊) holds. Combining above facts we get
φf (F (f(Q̊m))) ⊂ φf (F (f(Q̊i))), that is F̄ (Q̊m) ⊂ F̄ (Q̊i) for each i = 1, . . . , k.

Since G(x) = F̄ (Q̊1) ∩ . . . ∩ F̄ (Q̊k) = F̄ (Q̊m) for some Qm and F̄ is cubical, the
contractibility of F̄ implies acyclicity of G(x).

Lemma 8. Assume that the cube Q ∈ Kn, dimQ = n, and Q is not proper, that is
dim f(Q) = k for some 0 ≤ k < n, and the cube P ∈ Kn is proper and P ∩ Q ̸= ∅.
Then dimP ∩Q = k and dim f(P ∩Q) = k.

Proof. The cube P is proper, hence for each i ∈ In the component fi of the function
f restricted to P is injective. Thus, f restricted to P ∩Q is one-to-one.

Let P = [a1, b1]× . . .× [an, bn] and Q = [a1+u1, b1+u1]× . . .× [an+un, bn+un],
where ui ∈ {−1, 1} for i ∈ I ′(Q). We have ui = 0 for i ∈ I ′′(Q). It is easy to see that
P ∩ Q = [c1, d1] × . . . × [cn, dn], where di − ci = 0 for i ∈ I ′(Q) and di − ci = 1 for
i ∈ I ′′(Q). It follows that dimP ∩Q = k and dim f(P ∩Q) = k.

Lemma 9. Let Ā ⊂ X̄ be a full cubical set. For each y ∈ bd f(Ā)

(a) f−1(y) is a cuboid and dim f−1(y) > 0,

(b) there exists a unique cube Q ∈ Kmax(X̄) such that Q is not proper and f−1(y) ⊂
Q. Moreover, Q ∩ P ̸= ∅ for a proper cube P ∈ Kmax(cl(X̄ \ Ā)),

(c) dim f−1(y) = n−dim f(Q) provided f−1(y) ⊂ Q for a cube Q ∈ Kmax(X̄) which
is not proper.

Proof. Let y = (y1, . . . , yn) ∈ bd f(Ā). In order to prove (a) notice that since the set
f(Ā) is cubical, there exists an i ∈ In such that yi ∈ Z. This means that there is
a nonempty subset I ′y ⊂ In of all these indices such that f−1

i (yi) = [ai, bi] with ai ̸= bi.
By the definition of f (cf. Proposition 2), we have f−1(y) = [a1, b1] × . . . × [an, bn]
with

bi − ai =

{
1, if i ∈ I ′y
0, otherwise.

Since I ′y ̸= ∅, we get dim f−1(y) > 0.

Now we prove (b). Since X is full cubical and X̄ = g−1(X), also X̄ is full cubical.
Therefore, for any y ∈ bd f(Ā) there exists a Q ∈ Kmax(X̄) such that f−1(y) ⊂ Q.
Moreover, Q is not proper because I ′y ̸= ∅. This proves existence.

To prove uniqueness suppose to the contrary that there are cubesQ,Q′ ∈ Kmax(X̄)
which are not proper, Q ̸= Q′ and f−1(y) ⊂ Q ∩ Q′. We claim that dim f(Q) =
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dim f(Q′). Indeed, if dim f(Q) = k1, dim f(Q′) = k2 and k1 ̸= k2 then assume
that k1 < k2 and take i0 ∈ I ′(Q′) \ I ′(Q) such that bi0 − ai0 = 1, where f−1(y) =
[a1, b1] × . . . × [an, bn]. Since f−1(y) ⊂ Q and, in consequence, y ∈ f(Q), i0th
component of f restricted to Q is constant. Thus, i0 ∈ I ′(Q), which contradicts
the choice of i0. Since there are no two cubes with nonempty intersection such that
the restriction of f to these cubes is constant on coordinates in I ′y, there exists an
i ∈ I ′y such that either f |Q or f |Q′ on the ith coordinate is injective. This means
card f(f−1(y)) > 1, a contradiction.

We still need to prove the existence of a proper cube P ∈ Kmax(cl(X̄ \ Ā)) such
that P ∩ Q ̸= ∅. For this end take an R ∈ Kmax(cl(f(X̄) \ f(Ā))) such that y ∈ R.
By definition of f , there exists a proper cube P ∈ Kmax(X̄) such that f(P ) = R.
To show that P ∈ Kmax(cl(X̄ \ Ā)) suppose to the contrary that P ⊂ Ā. Since R ⊂
cl(f(X̄)\f(Ā)) and R ⊂ f(Ā), we have R ⊂ bd f(Ā) and ∅ ≠ intR ⊂ int bd f(Ā) = ∅,
a contradiction.

To show (c), let f−1(y) = [a1, b1]× . . .× [an, bn] ⊂ Q = J1 × . . .× Jn for some Q
which is not proper and bi− ai = 1 for i ∈ I ′y and bi− ai = 0 for i ∈ In \ I ′y. We have
dim f−1(y) = card I ′y. Since f−1(y) ⊂ Q, we have I ′y ⊂ I ′(Q). Now we prove that
I ′(Q) ⊂ I ′y. Let i ∈ I ′(Q). This means that fi|Ji is constant and for every zi ∈ Ji
there exist ci, di ∈ R such that di − ci = 1 and f−1

i (zi) = [ci, di]. Thus, i ∈ I ′y and
I ′(Q) = I ′y. Moreover,

dim f(Q) = card I ′′(Q) = card In \ I ′(Q) = card In \ I ′y
= card In − card I ′y = n− dim f−1(y),

which completes the proof of (c).

Let Ā ⊂ X̄ be a full cubical set. By the extended boundary of Ā we mean the set

Bd Ā := bd Ā ∪
⋃

{Q ∈ Kmax(Ā) | dim f(Q) < n,

∃P ∈ Kmax(cl(X̄ \ Ā)),dim f(P ) = n, P ∩Q ̸= ∅}. (7)

The main idea behind extended boundary of a set Ā in addition to being a bound-
ary is to gather all not proper cubes from Ā such that their intersection with bd Ā
is nonempty and their image under f is contained in bd f(Ā). In general, this is not
true that the value of any element in Bd Ā is in bd f(Ā).

Now, we show a few properties of the extended boundary.

Lemma 10. Let Ā ⊂ X̄ be a full cubical set. Then f−1(bd f(Ā)) ∩ Ā ⊂ Bd Ā.

Proof. Let x ∈ f−1(bd f(Ā))∩ Ā. Set y := f(x) and B := f−1(y). Then y ∈ bd f(Ā).
Since by Lemma 9 (a) dim f−1(y) > 0, we have cardB > 1. Let I ′y ⊂ In be the set

of all indices such that f−1
i (yi) = [ai, bi] with ai ̸= bi. We have I ′y ̸= ∅. Assume

card I ′y = n−k. By Proposition 2, B is a cuboid and, by Lemma 9, n−k > 0. By the

same lemma there exists a unique Q ∈ Kmax(X̄) such that B ⊂ Q, Q is not proper,
f |Q is constant on coordinates in I ′y and injective on coordinates in In \ I ′y and there

exists a proper cube P ∈ Kmax(cl(X̄ \ Ā)) such that Q ∩ P ̸= ∅. This means that
dim f(Q) = n− (n− k) = k.
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In order to prove that x ∈ Bd Ā we will consider cases Q ̸⊂ Ā and Q ⊂ Ā.
Consider the case Q ̸⊂ Ā. Then Q ∈ Kmax(cl(X̄ \ Ā)) and for any P ∈ Kmax(Ā) we
have P ∩Q ⊂ Q ⊂ cl(X̄ \ Ā) and P ∩Q ⊂ P ⊂ Ā. Thus P ∩Q ⊂ bd Ā and

Q ∩ Ā = Q ∩
⋃

P∈Kmax(Ā)

P ⊂ bd Ā ⊂ Bd Ā,

that is B ∩ Ā ⊂ Bd Ā. It follows that x ∈ Bd Ā. Consider the case Q ⊂ Ā. We have
proper cube P ∈ Kmax(cl(X̄ \ Ā)) such that Q ∩ P ̸= ∅. This means that Q ⊂ Bd Ā.
Thus B ⊂ Bd Ā. It follows that x ∈ Bd Ā.

Proposition 11. Let Ā ⊂ X̄ be a full cubical set. If x ∈ Ā and f(x) ∈ bd f(Ā) then
there exists an x′ ∈ bd Ā such that f(x) = f(x′).

Proof. Let x ∈ Ā \ bd Ā and f(x) ∈ bd f(Ā). Put B := f−1(f(x)). Clearly, x ∈
B ⊂ f−1(bd f(Ā)). By Lemma 9 there exists a Q ∈ Kmax(X̄) which is not proper,
satisfies dim f(Q) = k for some k < n and such that B ⊂ Q. Since Ā is full cubical
and x ∈ int Ā, we have Q ⊂ Ā.

The set bd f(Ā) is cubical and by definition of f−1 set f−1(bd f(Ā)) is full cubical.
Since B ⊂ f−1(bd f(Ā)), we haveQ ⊂ f−1(bd f(Ā)). By Lemma 10 we getQ ⊂ Bd Ā.
Moreover, we can find a proper cube P ∈ Kmax(cl(X̄ \ Ā)) such that Q ∩ P ̸= ∅. It
follows that P ∩Q ⊂ bd Ā.

Now assume that P = [a1, b1]× . . .× [an, bn] and Q = [a1+u1, b1+u1]× . . .× [an+
un, bn + un], where ui ∈ {−1, 0, 1}. Clearly, ui ∈ {−1, 1} for i ∈ I ′(Q) and ui = 0 for
i ∈ I ′′(Q). Then P ∩Q = J1 × . . .× Jn, where

Ji =

 {ai} if ui = −1,
{bi} if ui = 1,
[ai, bi] if ui = 0.

Since by Proposition 2 B is a cuboid, we have B = J ′
1 × . . .× J ′

n, where

J ′
i =

{
[ai + ui, bi + ui] if ui ∈ {−1, 1},
{ei} if ui = 0 for some ei ∈ (ai, bi).

Since ai = bi − 1, the intersection B ∩ P ∩Q ̸= ∅ and B ∩ P ∩Q ⊂ bd Ā. Hence,
taking an x′ ∈ B ∩ P ∩Q we obtain f(x′) = f(x) and x′ ∈ bd Ā.

Lemma 12. Let N̄ ⊂ X̄ be a full cubical set. For all Q ∈ Kmax(N̄) such that
Q ⊂ Bd N̄ the inclusion f(Q) ⊂ bd f(N̄) holds.

Proof. For any Q ⊂ Bd N̄ there exists a proper cube P ∈ Kmax(cl(X̄ \ N̄)) such that
P∩Q ̸= ∅. By Lemma 7, the inclusion f(Q) ⊂ bd f(P ) holds. Clearly, Q ⊂ Bd N̄ ⊂ N̄
and f(Q) ⊂ f(N̄). Suppose that f(Q) ∩ int f(N̄) ̸= ∅. We have f(Q) ∩ int f(N̄) ⊂
bd f(P ) ∩ int f(N̄). Since P is a proper cube, we also have f(intP ) = int f(P ) and
cl int f(P ) = f(P ). By Lemma 6,

∅ = (f(N̄) \ f(intP )) ∩ f(intP ) = f(N̄ \ intP ) ∩ f(intP ).

Hence, f(N̄ \ intP ) = f(N̄) and

int f(N̄) ∩ f(intP ) ⊂ f(N̄ \ intP ) ∩ f(intP ) = ∅.
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Therefore, f(intP ) ∩ int f(N̄) = int f(P ) ∩ int f(N̄) = ∅. By [7, Corollary 1.1.2],
the intersection f(P ) ∩ int f(N̄) = ∅ and bd f(P ) ∩ int f(N̄) ⊂ f(P ) ∩ int f(N̄) = ∅,
a contradiction. Hence, f(Q) ∩ int f(N̄) = ∅.

4. Dynamics of Maps F and F̄

In this section we give the description of invariant sets and isolating neighbourhoods
of dynamical systems generated by maps F̄ and F . Let X and X̄ be spaces as in the
previous section. An upper semicontinuous mapping F : X × Z ⊸ X with compact
values is called a discrete multivalued dynamical system if

(i) for all x ∈ X, F (x, 0) = {x},

(ii) for all n,m ∈ Z with nm ≥ 0 and all x ∈ X

F (F (x, n),m) = F (x, n+m),

(iii) for all x, y ∈ X, y ∈ F (x,−1) ⇐⇒ x ∈ F (y, 1).

Given a discrete multivalued dynamical system F : X × Z ⊸ X and n ∈ Z set
Fn : X ∋ x → F (x, n) ⊂ X. Since for every n ∈ Z the map Fn coincides with the
composition of n copies of either F 1 : X ⊸ X or (F 1)−1 : X ⊸ X, it is justified to
say that the multivalued map F := F 1 : X ⊸ X generates the discrete multivalued
dynamical system F : X × Z ⊸ X. This allows us to consider multivalued maps as
discrete multivalued dynamical systems.

Now we recall basic notions of multivalued dynamics. Let F : X ⊸ X be a multi-
valued map generating a discrete multivalued dynamical system. A mapping σ : Z →
X is called a solution for F through x ∈ X if σ(0) = x and σ(n + 1) ∈ F (σ(n)) for
all n, n+ 1 ∈ Z. Given N ⊂ X, by an invariant part of N with respect to F we mean
the set

Inv(N,F ) := {x ∈ N | ∃σ : Z → N a solution for F through x}.

A compact set N ⊂ X is called an isolating neighbourhood if Inv(N,F ) ⊂ intN .
Details concerning these notions may be found in [3].

The following proposition states the relation between invariant sets of the multi-
valued maps F and F̄ given by (4).

Proposition 13. Assume that N̄ ⊂ X̄ is a full cubical set. Then f(Inv(N̄ , F̄ )) =
Inv(f(N̄), F ).

Proof. By Proposition 4, for any x ∈ X̄ the equality f(F̄ (x)) = F (f(x)) holds. Let
σ̄ : Z → N̄ be a solution for F̄ through x ∈ Inv(N̄ , F̄ ). Consider σ(n) := f(σ̄(n)).
For every n ∈ Z we have

f(σ̄(n+ 1)) ∈ f(F̄ (σ̄(n))) = F (f(σ̄(n))) = F (σ(n)).
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Thus, σ : Z → f(N̄) is a solution for F through f(x) in f(N̄).
To prove the opposite inclusion, take a y ∈ Inv(f(N̄), F ). Let τ : Z → f(N̄) be

a solution for F through y. Since f is surjective, for every n ∈ Z we have τ(n) = f(un)
for a un ∈ N̄ . In particular, y = f(u0). Hence,

un+1 ∈ φf (τ(n+ 1)) ⊂ φf (F (τ(n))) = F̄ (un).

Therefore, τ̄ : Z → N̄ defined by τ̄(n) := un is a solution for F̄ through u0 in N̄ . It
follows that u0 ∈ Inv(N̄ , F̄ ) and y = f(u0) ∈ f(Inv(N̄ , F̄ )).

Proposition 14. Let N̄ ⊂ X̄ be a full cubical set and let y ∈ Inv(f(N̄), F ). Then
φf (y) ⊂ Inv(N̄ , F̄ ).

Proof. Let y = f(x) ∈ Inv(f(N̄), F ) for some x ∈ N̄ . This means that there is
a solution σ : Z → f(N̄) for F through y in f(N̄). Thus, for each n ∈ Z we have
σ(n) = f(xn) for some xn ∈ N̄ . Clearly,

xn+1 ∈ φf (σ(n+ 1)) ⊂ φf (F (σ(n))) = φf (F (f(xn))) = F̄ (xn).

Therefore, σ̄ : Z → N̄ such that σ̄(n) := xn is a solution for F̄ through x in N̄ .
Now let x′ ∈ φf (y). Define σ̄′ : Z → N̄ by

σ̄′(n) :=

{
σ̄(n), if n ̸= 0
x′, otherwise.

Clearly, σ̄′(1) ∈ F̄ (σ̄′(0)), because

σ̄′(1) = σ̄(1) ∈ F̄ (σ̄(0)) = φf (F (f(x))) = φf (F (f(x
′))) = F̄ (σ̄′(0)),

and σ̄′(0) ∈ F̄ (σ̄′(−1)), because by Proposition 4

f(σ̄′(0)) = y = f(σ̄(0)) ∈ f(F̄ (σ̄(−1))) = F (f(σ̄(−1))) = F (f(σ̄′(−1)))

and

σ̄′(0) ∈ φf (f(σ̄
′(0))) ⊂ φf (F (f(σ̄

′(−1)))) = F̄ (σ̄′(−1)).

Hence, σ̄′ is a solution for F̄ through x′ in N̄ . This shows that x′ ∈ Inv(N̄ , F̄ ) and
proves that φf (y) ⊂ Inv(N̄ , F̄ ).

Proposition 15. Let N̄ ⊂ X̄ be a full cubical set. If N̄ is an isolating neighbourhood
for F̄ , then f(N̄) is an isolating neighbourhood for F .

Proof. Suppose by contrary that f(N̄) is not an isolating neighbourhood for F . Then
there exists a y ∈ Inv(f(N̄), F ) ∩ bd f(N̄). By Proposition 13 there exists an x ∈
Inv(N̄ , F̄ ) such that y = f(x). By Proposition 11 there exists an x′ ∈ bd N̄ such that
f(x) = f(x′) = y. We get from Proposition 14 that x′ ∈ Inv(N̄ , F̄ ). Since x′ ∈ bd N̄ ,
this contradicts the assumption that N̄ is an isolating neighbourhood for F̄ .

Proposition 16. Let N̄ ⊂ X̄ be a full cubical set. If N̄ is an isolating neighbourhood
for F̄ , then Inv(N̄ , F̄ ) ⊂ N̄ \ Bd N̄ .
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Proof. Suppose that the conclusion is not true. Then, there exists an x ∈ Inv(N̄ , F̄ )∩
Bd N̄ . We cannot have x ∈ bd N̄ , because N̄ is an isolating neighbourhood for F̄ .
Hence, x ∈ Bd N̄ \ bd N̄ . This means that there exists a Q ∈ Kmax(N̄) with x ∈ Q
and such that there is a proper cube P ∈ Kmax(cl(X̄ \ N̄)) satisfying P ∩Q ̸= ∅. By
Propositions 13 and 15 we have f(x) ∈ Inv(f(N̄), F ) ⊂ int f(N̄), and by Lemma 12
obviously f(x) ∈ bd f(N̄), a contradiction.

In order to investigate Conley index we need one more notion. A pair P = (P1, P2)
of compact sets such that P2 ⊂ P1 ⊂ N is called a weak index pair in isolating
neighbourhood N if

(a) F (Pi) ∩N ⊂ Pi for i = 1, 2,

(b) bdF (P1) := P1 ∩ cl(F (P1) \ P1) ⊂ P2,

(c) Inv(N,F ) ⊂ int(P1 \ P2),

(d) P1 \ P2 ⊂ intN .

Theorem 17. Let N̄ ⊂ X̄ be a full cubical set. Assume that N̄ is an isolating
neighbourhood for F̄ and P = (P1, P2) is a weak index pair for F̄ in N̄ consisting of
full cubical sets. Then f(P ) = (f(P1), f(P2)) is a weak index pair for F in f(N̄).

Proof. For the sake of clarity let Q := (Q1, Q2) denote the pair f(P ) = (f(P1), f(P2)).
To prove property (a) of weak index pair, take a y ∈ F (Qi)∩ f(N̄) for i = 1, 2. Since
y ∈ f(N̄), there is an x ∈ N̄ such that y = f(x). Clearly, y ∈ F (Qi) = F (f(Pi)) and
x ∈ φf (y) ⊂ φf (F (f(Pi))) = F̄ (Pi). By property (a) of weak index pair P for F̄ , we
have x ∈ Pi and y = f(x) ∈ f(Pi) = Qi.

Now we prove property (d). Suppose by the contrary that there exists a y ∈ Q1

such that y ̸∈ Q2 and y ∈ bd f(N̄). Take an x ∈ P1 such that y = f(x). We have
x ̸∈ P2 and since P is a weak index pair we obtain x ∈ P1 \ P2 ⊂ int N̄ . Since
x ∈ φf (y) and x ∈ int N̄ , we get from Lemma 10 that x ∈ Bd N̄ ∩ P1. Thus, there is
an S ∈ Kmax(N̄) such that x ∈ S ⊂ Bd N̄ ∩ P1 and S ̸⊂ P2 because P1 and P2 are
full cubical. It follows that there exists a proper cube R ∈ Kmax(cl(X̄ \ N̄)) satisfying
R ∩ S ̸= ∅. Therefore, R ∩ S ⊂ bd N̄ and R ∩ S ⊂ S ⊂ P1 \ P2 which contradicts
P1 \ P2 ⊂ int N̄ .

In order to prove property (b) assume by contrary that there exists a y ∈ Q1 ∩
cl(F (Q1) \ Q1) \ Q2. Then y ∈ Q1 \ Q2 and y ∈ cl(F (Q1) \ Q1). Take the sequence
{yn}n∈N ⊂ F (Q1) \ Q1 such that yn → y. By the just proved property (d) we have

y ∈ int f(N̄). Thus, for sufficiently large n ∈ N we have yn ∈ F (Q1) ∩ int f(N̄) ⊂
F (Q1) ∩ f(N̄) ⊂ Q1, a contradiction.

To show property (c) we will first prove that Inv(f(N̄), F ) ∩Q2 = ∅. Assume the
contrary. Then there exists a y ∈ Inv(f(N̄), F ) ∩Q2. Since Q2 = f(P2) we may take
an x ∈ P2 such that y = f(x). Since y ∈ Inv(f(N̄), F ), by Proposition 14, we have
x ∈ Inv(N̄ , F̄ ). This proves that P2∩Inv(N̄ , F̄ ) ̸= ∅ which contradicts the assumption
that P is a weak index pair for F̄ in N̄ and proves that Inv(f(N̄), F ) ∩Q2 = ∅.

Next, we will prove that Inv(f(N̄), F ) ⊂ intQ1. Assume the contrary. Since
Inv(f(N̄), F ) = f(Inv(N̄ , F̄ )) ⊂ f(int(P1 \ P2)) ⊂ f(P1) = Q1, there is a y ∈
Inv(f(N̄), F ) ∩ bdQ1. Since y ∈ bdQ1 ⊂ Q1, we can take an x ∈ P1 such that
y = f(x). Since y ∈ Inv(f(N̄), F ), by Proposition 14, we have x ∈ Inv(N̄ , F̄ ). It fol-
lows that x ∈ φf (y) ⊂ φf (bd f(P1)) and x ∈ P1. Hence, by Lemma 10, we get
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x ∈ BdP1. But, also x ∈ Inv(N̄ , F̄ ) ⊂ Inv(P1, F̄ ). Therefore, BdP1 ∩ Inv(P1, F̄ ) ̸= ∅.
But, by Proposition 16 we get Inv(P1, F̄ ) ⊂ P1 \ BdP1, a contradiction.

Assume F has acyclic values. Given a weak index pair P = (P1, P2) in an isolating
neighbourhood N ⊂ X let

T (P ) := TN (P ) := (P1 ∪ (X \ intN), P2 ∪ (X \ intN))

and let FP : P ⊸ T (P ) be a restriction of F to the weak index pair P . Note that
FP is a well defined map of pairs. Consider the inclusion iP : P → T (P ). The
map iP induces an isomorphism in Alexander-Spanier cohomology. Thus, we can
consider an endomorphism H∗(FP ) ◦ (H∗(iP ))

−1 : H∗(P ) → H∗(P ). It is called the
index map associated with the weak index pair P . Applying the Leray functor to
(H∗(P ), H∗(FP ) ◦ (H∗(iP ))

−1) we obtain a graded module over Z equipped with
the endomorphism. It is called the cohomological Conley index of Inv(N,F ) and
it is denoted by C(Inv(N,F ), F ). For more details regarding the definition of the
cohomological Conley index see [3].

Now, we prove that the Conley index of an isolated invariant set S̄ in X̄ is related
by the commutativity property to the index of f(S̄) in X with f the continuous map
introduced in Section 3..

In the case of f : X̄ → X given by (3) the statement of [1, Theorem 7.1] remains
valid despite the fact that f is not an injection. More precisely, we have the following
theorem.

Theorem 18. Let X ⊂ Rn be a full cubical set and let F : X ⊸ X be discrete multi-
valued dynamical system with cubical and contractible values. Assume X̄, f : X̄ → X
and F̄ : X̄ ⊸ X̄ are defined as in Section 3.. Then, the map F̄ is admissible, the map
ψ := φfF is upper semicontinuous with compact acyclic values and diagram

X̄ X̄

X X

f

F̄

F

f
ψ

(8)

commutes. Moreover, if a full cubical set N̄ ⊂ X̄ is an isolating neighbourhood
with respect to F̄ which admits a weak index pair in N̄ consisting of a pair of full
cubical sets, then f(Inv(N̄ , F̄ )) is an isolated invariant set with respect to F and
C(Inv(N̄ , F̄ ), F̄ ) = C(f(Inv(N̄ , F̄ )), F ).

Before the proof consider an example which shows the importance of the assump-
tion concerning existence of a weak index pair consisting of full cubical sets. Nat-
urally, for any isolating neighbourhood there exists a weak index pair [3, Theorem
4.12]. However, it does not need to be a pair of full cubical sets.

Let X̄ = [0, 11] ⊂ R and define F̄ : X̄ ⊸ X̄ by

F̄ (x) :=


[0, 1] if x ∈ [0, 4),
[0, 7] if x ∈ [4, 5],
[4, 7] if x ∈ (5, 6),
[4, 11] if x ∈ [6, 7],
[10, 11] if x ∈ (7, 11].
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Consider an isolating neighbourhood N̄ = [3, 8]. Clearly, N̄ is full cubical and Inv N̄ =
[4, 7]. There exists a weak index pair (e.g. P1 = [3, 8] and P2 = {3, 8}), but there is
no weak index pair consisting of full cubical sets.

Proof. By Proposition 5, the map F̄ is admissible.

Since both maps φf and F are upper semicontinuous with compact values, by [4,
Proposition 14.10], their composition is upper semicontinuous with compact values.
For each x ∈ X the value F (x) is cubical and contractible. By the argument similar
to the one in the proof of Lemma 3, the map φf ◦ F has cubical and contractible
values, which implies acyclicity of ψ. Thus, ψ is upper semicontinuous with compact
acyclic values.

To prove commutativity of the diagram (8) notice that ψ ◦ f = φf ◦ F ◦ f = F̄
and f ◦ ψ = f ◦ φf ◦ F = idX ◦F = F .

By Proposition 13, the set f(Inv(N̄ , F̄ )) is an invariant set. By Proposition 15,
the set f(N̄) is an isolating neighbourhood of f(Inv(N̄ , F̄ )).

Let P = (P1, P2) be a weak index pair in N̄ consisting of full cubical sets. By
Theorem 17, the pair (Q1, Q2) = (f(P1), f(P2)) is a weak index pair for F in f(N̄).
By [1, Lemma 3.3(i)], we have F (P ) ⊂ TN̄ (P ). Therefore, we have a well defined map
of pairs F̄P,TN̄ (P ) : P ⊸ TN̄ (P ). Analogously, we define FQ,Tf(N̄)(Q) : Q ⊸ Tf(N̄)(Q).
We have the following commutative diagram

(P1, P2) (TN̄,1(P ), TN̄,2(P )) (P1, P2)

(Q1, Q2) (Tf(N̄),1(f(P )), Tf(N̄),2(f(P ))) (Q1, Q2)

F̄

f f

j̄

f

F

ψ

j

where j̄ and j denote inclusions. These inclusions induce isomorphisms in cohomology
(cf. [1, Lemma 3.3(ii)]). Therefore, the index maps IP := H∗(F̄P,TN̄ (P )) ◦ H∗(j̄)−1,
IQ := H∗(FQ,Tf(N̄)(Q))◦H∗(j)−1 and IQP := H∗(ψQ,TN̄ (P ))◦H∗(j̄)−1 are well defined
and the diagram

H∗(P ) H∗(P )

H∗(Q) H∗(Q)

IP

IQP
f∗

IQ

f∗

commutes. Since (H∗(P ), IP ) and (H∗(Q), IQ) are linked in the sense of [9], the Leray
reductions of these graded cohomology modules with endomorphisms are isomorphic.
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5. Conclusions

Theory developed in this note allows to use available algorithms to compute compo-
nents necessary to investigate Conley index for discrete multivalued dynamical system.
The multivalued map generating the system does not need to satisfy the requirement
of existence of continuous selector.

Since in applications the multivalued map is usually defined only on maximal
dimensional cubes, we still need to ensure correct values for lower dimensional cubes.
This can be done by choosing type of value for lower dimensional cubes. By default
the available software takes as a value for lower dimensional cube the union of values
of maximal dimensional cubes which are cofaces of lower dimensional one. However,
the union of contractible values is not necessary contractible. Therefore, we need to
extend the union to a contractible set. An example of type of values is convex hull
of the union, star-shaped set or other contractible set containing the default union of
values. Note that none of the above-mentioned types of values guarantee the existence
of continuous selector of the multivalued map (cf. examples in [2]).

These considerations enable us briefly summarise steps for real computations. As
an input for described in this paper procedure we need to deliver an u.s.c. cubical
multivalued map and a policy of determining values on lower dimensional cubes. In
order to proceed with computations, one should make use of algorithms of finding an
isolating neighbourhood and a weak index pair (cf. [12, 5, 1]) for obtained admissi-
ble multivalued map. Finally, (co)homological computations are done by algorithms
implemented in [10].

An extensive example of using methods developed in this paper as well as an
output from available software can be found in [2].

6. Acknowledgements

This research was supported by the Polish National Science Center under Maestro
Grant No. 2014/14/A/ST1/00453.

7. References

[1] Batko B.; Weak index pairs and the Conley index for discrete multivalued dy-
namical systems. Part II: properties of the Index, SIAM Journal on Applied
Dynamical Systems, 16(3), 2017, pp. 1587–1617.



24

[2] Batko B., Mischaikow K., Mrozek M., Przybylski M.; Conley index approach to
sampled dynamics, in review.

[3] Batko B., Mrozek M.; Weak index pairs and the Conley index for discrete multi-
valued dynamical systems, SIAM Journal on Applied Dynamical Systems, 15(2),
2016, pp. 1143–1162.
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