PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degradation Characterization and Mechanisms of Warm Rolled Mg-1.6Gd with 95% Reduction Ratio for Biodegradable Implant Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mg-1.6Gd binary alloy was subjected to uniaxial warm rolling at a unidirectional and cross-sectional with a reduction ratio of 95% in order to observe the relationship between its microstructural changes to the degradation behavior. The warm rolling was performed at a temperature range of its recrystallization temperature, which were 400°C and 560°C, and a feed rate of 10 mm/min. Degradation behaviors of Mg-1.6Gd binary alloy was evaluated by means of potentiodynamic polarization and hydrogen evolution test in modified Kokubo’s SBF solution at temperature of 37 ± 1ºC. The lowest corrosion rate of 0.126 mm/year derived from potentiodynamic polarization test was showed by unidirectional-rolled specimen at temperature of 560°C. Hydrogen evolution test results showed the lowest hydrogen gas formed during 24 hours of immersion was found on unidirectional-rolled specimen at temperature of 560°C with a rate of 0.268 cc/cm2/hours. While cross rolled specimens showed a high corrosion and hydrogen evolution rate of 20 mm/year and 0.28 cc/cm2/hours.
Słowa kluczowe
Twórcy
  • Universitas Indonesia, Department of Metallurgical and Materials Engineering, Depok, Indonesia
  • Universitas Indonesia, Department of Metallurgical and Materials Engineering, Depok, Indonesia
  • Universitas Andalas, Department of Mechanical Engineering, Padang, Indonesia
autor
  • Universitas Indonesia, Department of Metallurgical and Materials Engineering, Depok, Indonesia
Bibliografia
  • [1] A. Zakiyuddin, K. Lee, J. Alloys Compd. 629, 274-283 (2015).
  • [2] M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728-34 (2006).
  • [3] N. T. Kirkland, N. Birbilis, “Magnesium Biomaterials: Design, Testing, and Best Practice”, Springer International Publishing, (2014).
  • [4] J. Li, R. Chen, W. Ke, Trans. Nonferrous Met. Soc. China 21, 761-766 (2011).
  • [5] J. Liu, D. Bian, Y. Zheng, X. Chu, Y. Lin, M. Wang, Z. Lin, M. Li, Y. Zhang, S. Guan, Acta Biomater., (2019).
  • [6] Q. M. Peng, Y. M. Wu, D. Q. Fang, J. Meng, L. M. Wang, J. Alloys Compd. 430, 252-256 (2007).
  • [7] J. Chen, L. Tan, K. Yang, Bioact. Mater. 2, 19-26 (2017).
  • [8] K.-C. Kung, T.-M. Lee, T.-S. Lui, J. Alloys Compd. 508, 384-390 (2010).
  • [9] F. Zarandi, S. Yue, Magnes. Alloy. - Des. Process. Prop., (2011).
  • [10] L. L. C. Catorceno, H. F. G. de Abreu, A. F. Padilha, J. Magnes. Alloy 6, 121-133 (2018).
  • [11] J. Kubásek, D. Vojtěch, J. Čapek, Acta Phys. Pol. A 122, 520-523 (2012).
  • [12] A. Zakiyuddin, K. Yun, K. Lee, Met. Mater. Int. 20, 1163-1168 (2014).
  • [13] K. D. Ralston, N. Birbilis, Corrosion 66, 075005-075005-13 (2010).
  • [14] N. T. Kirkland, N. Birbilis, M. P. Staiger, Acta Biomater. 8, 925-36 (2012).
Uwagi
EN
1. This research was supported by Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia (DRPM-UI) under the grant of PITTA UI 2018 No. NKB-0787/UN2.R3.1/HKP.05.00/2019.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb54df13-7f7a-4ce9-93af-6f868cdacfd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.