Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents an analysis of the use of Savonius wind turbines with vertical axis of rotation. The first part presents an analysis of the literature with the dentification of the properties of the basic atmospheric parameters related to the air movement referred to as wind. Used mathematical descriptions used in the analysis of air movement and enabling the identification of basic thermodynamic parameters of wind turbines with a vertical axis of rotation were presented. Then, the historical background of the development of wind turbines with a vertical axis of rotation was presented, and constructions of this type currently used were described. Proposals for modification of the configuration and design of Savonius rotors and the impact of these activities on their efficiency were analyzed. These issues were presented in relation to the experimental work carried out in the international research centers. Obvious advantages and disadvantages of using this type of equipment in the field of wind energy were indicated.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
665--704
Opis fizyczny
Bibliogr. 52 poz., rys., wz.
Twórcy
autor
- Technical University of Koszalin, Faculty of Mechanical Engineering and Energy, Department of Energy, Racławicka 15-17, 75-620 Koszalin, Poland
autor
- Technical University of Koszalin, Faculty of Mechanical Engineering and Energy, Department of Food Processes and Equipment, Racławicka 15-17, 75-620 Koszalin, Poland
autor
- Maritime University of Technology of Szczecin, Faculty of Mechanical Engineering, Willowa 2, 75-500 Szczecin, Poland
autor
Bibliografia
- [1] Flaga A.: Wind Engineering: Fundamentals and Applications; Arkady, Warszawa 2008 (in Polish).
- [2] Atmospheric Structure Available. https://www.thephysicalenvironment.com/Book/atmosphere/atmospheric_structure.html (accessed 14 Nov. 2022).
- [3] Shepherd W., Zhang L.: Electricity Generation Using Wind Power (2nd Edn.), World Scientific, New Jersey 2017.
- [4] What Is Global Atmospheric Circulation Available. https://www.internetgeography.net/topics/what-is-global-atmospheric-circulation/ (accessed 14 Nov. 2022).
- [5] Wolańczyk F.: Wind Power Plants (2nd Edn.). Wydawnictwo i Handel Książkami KaBe, Krosno 2014 (in Polish).
- [6] Maroński R.: Wind Power Plants. Wyd. PW, Warszawa 2016 (in Polish).
- [7] Jagodziński W.: Wind Engines. PWT, Warszawa 1959 (in Polish).
- [8] Chauvin A., Benghrib D.: Drag and lift coefficients evolution of a Savonius rotor. Exp. Fluids 8(1989), 118–120. doi: 10.1007/BF00203076
- [9] Paraschivoiu I.: Wind Turbine Design: With Emphasis on Darrieus Concept. Presses Internat. Polytechnique, Montreal 2009.
- [10] Boas M. Hero’s Pneumatica: A study of its transmission and influence. Isis 40(1949),1, 38–48. doi: 10.1086/348993
- [11] Cullen C.: Science and Civilisation in China. Vol. 5: Chemistry and Chemical Technology. Part 2: Spagyrical Discovery and Invention: Magisteries of Gold and Immortality. China Q. 65(1976), 143–144. doi: 10.1017/S0305741000031908
- [12] Vowles H.P.: An inquiry into origins of the windmill. Trans. Newcomen Soc. 11(1930), 1–14. doi: 10.1179/tns.1930.001
- [13] White L.: Medieval Technology and Social Change. Oxford Univ. Press, London1980.
- [14] Drachman R.J.: Extension of the variational method for Hard-Sphere Bosons. Phys. Rev. 121(1961), 643–647. doi: 10.1103/PhysRev.121.643
- [15] Greenwood J.G., Woodcroft B.: The Pneumatics of Hero of Alexandria, From the Original Greek. History of science library. London, Taylor, Walton and Maberly,1851.
- [16] Hero of Alexandria, Schmidt W.: Herons Von Alexandria Druckwerke Und Automatentheater = Pneumatica et Automata. Legare Street Press, 2022.
- [17] Bellew H.W.: From the Indus to the Tigris. Creative Media Partners, LLC 2018.
- [18] Hedin S.A.: Overland to India: Vol. 2. Creative Media Partners, LLC 2018.
- [19] Wulff H.E.: The Traditional Crafts of Persia: Their Development, Technology, and Influence on Eastern and Western Civilizations. MIT. Press, 1966.
- [20] Spera D.A.: Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering. ASME Press, 2009.
- [21] Lyatkher V.M.: Wind Power: Turbine Design, Selection, and Optimization. Wiley, 2013.
- [22] Wolniewicz K., Kuczyński W., Zagubień A.: Method for wind turbine selection basing on in-field measurements. J. Mech. Energy Eng. 3(2019), 77–84. doi:10.30464/jmee.2019.3.1.77
- [23] Sheldahl R.E., Blackwell B.F., Feltz L.V.: Wind tunnel performance data for twoand three-bucket Savonius rotors. J. Energy 2(1978), 160–164. doi: 10.2514/3.47966
- [24] Pope A., Barlow J.R., Rae W.H.: Low-Speed Wind Tunnel Testing. Wiley India Pvt,2010.
- [25] Sharma S., Sharma R.K.: Performance improvement of Savonius rotor using multiple quarter blades – a CFD investigation. Energy Convers. Manage. 127(2016), 43–54. doi: 10.1016/j.enconman.2016.08.087
- [26] Saha U.K., Rajkumar M.J.: On the performance analysis of Savonius rotor with twisted blades. Renew. Energy 31(2006), 1776–1788. doi: 10.1016/j.renene.2005.08.030
- [27] Akwa J.V., Alves da Silva Júnior G., Petry A.P.: Discussion on the verification of the overlap ratio influence on performance coefficients of a Savonius wind rotor using computational fluid dynamics. Renew. Energy 38(2012), 141–149. doi:10.1016/j.renene.2011.07.013
- [28] Akwa J.V., Vielmo H.A., Petry A.P.: A review on the performance of Savonius wind turbines. Renew. Sustain. Energy Rev. 16(2012), 3054–3064. doi: 10.1016/j.rser.2012.02.056
- [29] Alexander A.J., Holownia B.P.: Wind tunnel tests on a Savonius rotor. J. Wind Eng. Ind. Aerodyn. 3(1978), 343–351. doi: 10.1016/0167-6105(78)90037-5
- [30] Aslam Bhutta M.M., Hayat N., Farooq A.U., Ali Z., Jamil Sh.R., Hussain Z.: Vertical axis wind turbine – a review of various configurations and design techniques. Renew. Sustain. Energy Rev. 16(2012), 1926–1939. doi: 10.1016/j.rser.2011.12.004
- [31] Boczar T.: Use of Wind Energy (2nd Edn.). Wydawn. PAK, Warszawa 2010 (in Polish).
- [32] Fujisawa N.: On the torque mechanism of Savonius rotors. J. Wind Eng. Ind. Aerodyn. 40(1992), 277–292. doi: 10.1016/0167-6105(92)90380-S
- [33] Jeon K.S., Jeong J.I., Pan J.K., Ryu K.W.: Effects of end plates with various shapes and sizes on helical Savonius wind turbines. Renew. Energy 79(2015), 167–176. doi:10.1016/j.renene.2014.11.035
- [34] Kumbernuss J., Chen J., Yang H.X., Lu L.: Investigation into the relationship of the overlap ratio and shift angle of double stage three bladed vertical axis wind turbine (VAWT). J. Wind Eng. Ind. Aerodyn. 107−108(2012), 57–75. doi:10.1016/j.jweia.2012.03.021
- [35] Manwell J.F., MacGowan J.G., McGowan J.G., Rogers A.L.: Wind Energy Explained: Theory, Design and Application. Wiley, 2009.
- [36] Saha U.K., Thotla S., Maity D.: Optimum design configuration of Savonius rotor through wind tunnel experiments. J. Wind Eng. Ind. Aerodyn. 96(2008), 1359–1375. doi: 10.1016/j.jweia.2008.03.005
- [37] Posa A., Parker C.M., Leftwich M.C., Balaras E.: Wake structure of a single vertical axis wind turbine. Int. J. Heat Fluid Flow 61(2016), 75–84. doi:10.1016/j.ijheatfluidflow.2016.02.002
- [38] Shahizare B., Nik-Ghazali N., Chong W.T., Tabatabaeikia S., Izadyar N., Esmaeilzadeh A.: Novel investigation of the different omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation. Energy Convers. Manage. 117(2016), 206–217. doi: 10.1016/j.enconman.2016.03.034
- [39] Yin C., Zhang Z., Wang Z., Guo H.: Numerical simulation and experimental validation of ultrasonic De-Icing system for wind turbine blade. Appl. Acoust. 114(2016),19–26. doi: 10.1016/j.apacoust.2016.07.004
- [40] Wekesa D.W., Wang C., Wei Y., Zhu W.: Experimental and numerical study of turbulence effect on aerodynamic performance of a small-scale vertical axis wind turbine. J. Wind Eng. Ind. Aerodyn. 157(2016), 1–14. doi: 10.1016/j.jweia.2016.07.018
- [41] Nezamolmolki D., Shooshtari A.: Investigation of nonlinear dynamic behavior of lattice structure wind turbines. Renew. Energy 97(2016), 33–46. doi: 10.1016/j.renene.2016.05.070
- [42] Wang L., Kolios A., Nishino T., Delafin P.L., Bird T.: Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm. Compos. Struct. 153(2016), 123–138. doi: 10.1016/j.compstruct.2016.06.003
- [43] Akbar M.A., Mustafa V.: A new approach for optimization of vertical axis wind turbines. J. Wind Eng. Ind. Aerodyn. 153(2016), 34–45. doi: 10.1016/j.jweia.2016.03.006
- [44] Giahi M.H., Dehkordi A.J.: Investigating the influence of dimensional scaling on aerodynamic characteristics of wind turbine using CFD simulation. Renew. Energy97(2016), 162–168. doi: 10.1016/j.renene.2016.05.059
- [45] Li Q., Murata J., Endo M., Maeda T., Kamada Y.: Experimental and numerical investigation of the effect of turbulent inflow on a horizontal axis wind turbine (part II: Wake characteristics). Energy 113(2016), 1304–1315. doi: 10.1016/j.energy.2016.08.018
- [46] Campobasso M.S., Drofelnik J., Gigante F.: Comparative assessment of the harmonic balance Navier–Stokes technology for horizontal and vertical axis wind turbine aerodynamics. Comput. Fluids 136(2016), 354–370. doi: 10.1016/j.compfluid.2016.06.023
- [47] Chong W.T., Gwani M., Shamshirband S., Muzammil W.K., Tan C.J., Fazlizan A., Poh S.C., Petković D., Wong K.H.: Application of adaptive neuro-fuzzy methodology for performance investigation of a power-augmented vertical axis wind turbine. Energy 102(2016), 630–636. doi: 10.1016/j.energy.2016.02.082
- [48] Zuo W., Wang X., Kang S.: Numerical simulations on the wake effect of H-type vertical axis wind turbines. Energy 106(2016), 691–700. doi: 10.1016/j.energy.2016.02.127
- [49] Jia X., Jin C., Buzza M., Wang W., Lee J.: Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves. Renew. Energy 99(2016), 1191–1201. doi: 10.1016/j.renene.2016.08.018
- [50] Wang Y, Sun X., Dong X., Zhu B., Huang D., Zheng Z.: Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades. Energy Convers. Manage. 108(2016), 275–286. doi: 10.1016/j.enconman.2015.11.003
- [51] Menet J.L.: A double-step Savonius rotor for local production of electricity: A design study. Renew. Energy 29(2004), 1843–1862. doi: 10.1016/j.renene.2004.02.011
- [52] Mohamed M.H., Janiga G., Pap E., Thévenin D.: Optimization of Savonius turbines using an obstacle shielding the returning blade. Renew. Energy 35(2010), 2618–2626.doi: 10.1016/j.renene.2010.04.007
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb4f50fd-2ffe-47df-bfa1-d7b2d9a45ca1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.