Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Furazanyl ether has great potential to be an important candidate as a casting explosive and energetic plasticizer. The density functional theory (DFT) method was used to investigate the heats of formation (HOFs), molecular stability, detonation performance and melting point of a series of substituted furazanyl ethers at B3LYP/6-311G(d,p) level. The results show that the introduction of –N3 or –N(O)=N– groups significantly improves the HOFs values of the derivatives. The bond dissociation energies (BDEs) were analyzed, showing that the N–O bond in the furazan ring is the weakest for most compounds and the ring is vulnerable to cleavage in thermal decomposition. The calculation of density, detonation velocities and detonation pressures suggests that the substitution of –NF2, –CF(NO2)2, furoxan or –N(O)=N– group is an effective method for enhancing their detonation performance. The melting points were determined according to the variation of specific heat capacity, and good estimates were obtained in comparison with the available experimental data. Taking into account the detonation performance and melting point, four compounds are favoured for application in melt cast explosive or energetic plasticizers.
Rocznik
Tom
Strony
47--71
Opis fizyczny
Bibliogr. 70 poz., rys., tab.
Twórcy
autor
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
- Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065, People’s Republic of China
autor
- Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065, People’s Republic of China
autor
- Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065, People’s Republic of China
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an, Shaanxi 710065, People’s Republic of China
autor
- Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
autor
- Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065, People’s Republic of China
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi’an, Shaanxi 710065, People’s Republic of China
autor
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
Bibliografia
- [1] Sheremetev, A. B. Chemistry of Furazans Fused to Five-membered Rings. J. Heterocycl. Chem. 1995, 32: 371-385.
- [2] Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D. 3,3′-Azobis(6-amino-1,2,4,5-tetrazine): A Novel High-Nitrogen Energetic Material. Angew. Chem. Int. Ed., 2000, 39: 1791-1793.
- [3] Talawar, M. B.; Sivabalan, R.; Senthilkumar, N.; Gurumallesh, P.; Asthana, S. N. Synthesis, Characterization and Thermal Studies on Furazan- and Tetrazine-based High Energy Materials. J. Hazard. Mater. 2004, 113: 11-25.
- [4] Hiskey, M. A.; Goldman, N.; Stine, J. R. High-nitrogen Energetic Materials Derived From Azotetrazolate. J. Energ. Mater. 1998, 16: 119-127.
- [5] Zelenin, A. K.; Trudell, M. L. Synthesis and Structure of Dinitroazofurazan. J. Heterocycl. Chem. 1998, 35: 151-155.
- [6] Sheremetev, A. B.; Kharitonova, O. V.; Aleksandrova, N. S.; Dmitriev, D. E.; Strelenko, Y. A. Dinitro Trifurazans with Oxy, Azo, and Azoxy Bridges. Propellants Explos. Pyrotech. 1998, 23: 142-149.
- [7] Wang, B.-Z.; Li, H.; Li, Y.-N.; Lian, P.; Zhou, Y.-S.; Wang, X.-J. Review on Energetic Compounds Based on Furoxanyl Ether. Chin. J. Energ. Mater. 2012, 20: 385-390.
- [8] Sheremetev, A. B.; Kharitonova, O. V.; Melnikova, T. M.; Novikova, T. S.; Kuzmin, V. S.; Khmelnitskii, L. I. Synthesis of Symmetrical Difurazanyl Ethers. Mendelev Commun. 1996, 6: 141-143.
- [9] Sheremetev, A. B.; Aleksandrova, N. S.; Melnikova, T. M.; Novikova, T. S.; Strelenko, Y. A.; Dmitriev, D. E. Synthesis of Difurazanyl Ethers from 4,4’-Dinitroazoxyfurazan. Heteroatom Chem. 2000, 11: 48-56.
- [10] Fan, Y.; Wang, B.; Lai, W.; Lian, P.; Jiang, J.; Wang, X.; Xue, Y. Synthesis, Characterization and Quantum Chemistry Study on 3,3’-Dicyanodifurazanyl Ether (FOF-2). Chin. J. Org. Chem. 2009, 29: 614-620.
- [11] Zhai, L.-J.; Wang, B.-Z.; Huo, H.; Hu, H.-M.; Su, P.-F.; Fan, X.-Z.; Li, H. Synthesis, Crystal Structure and Thermal Behavior of 3,4-Bis(3-nitrofurazan-4-oxy)furazan. Chin. J. Energ. Mater. 2015, 23: 18-22.
- [12] Sheremetev, A. B. 3,3-Bis(1-fluoro-1,1-dinitromethyl)difurazanyl Ether. 29th Int. Annu. Conf. ICT, Karlsruhe, Germany 1998, 58/1-58/6.
- [13] Zhai, L.; Wang, B.; Xu, K.; Huo, H.; Liu, N.; Li, Y.; Li, H.; Lian, P.; Fan, X. A New Synthetic Route for 3,3’-Bis(fluorodinitromethyl)difurazanyl Ether (FOF-13) and its Energetic Properties. J. Energ. Mater. 2016, 34: 92-102.
- [14] Ravi, P.; Gore, G. M.; Venkatesan, V.; Tewari, S. P.; Sikder, A. K. Theoretical Studies on the Structure and Detonation Properties of Amino-, Methyl-, and Nitrosubstituted 3,4,5-Trinitro-1H-pyrazoles. J. Hazard. Mater. 2010, 183: 859-865.
- [15] Wang, K.; Shu, Y.; Liu, N.; Ding, X.; Wu, Z.; Lu, Y. Computational Investigation on the Structure and Performance of Novel 4,7-Dinitro-furazano-[3,4-d]-pyridazine Derivatives. Cent. Eur. J. Energ. Mater. 2017, 14: 26-46.
- [16] Murawski, R. J.; Ball, D. W. Aminonitronaphthalenes as Possible High Energy Density Materials. Cent. Eur. J. Energ. Mater. 2015, 12: 3-12.
- [17] Ravi, P.; Tewari, S. P. A DFT Study on the Structure-property Relationship of Amino-, Nitro, and Nitrosotetrazoles and Their N-oxides: New High Energy Density Molecules. Struct. Chem. 2012, 23: 487-498.
- [18] Pan, Y.; Zhu, W.; Xiao, H. DFT Studies on Trinitromethyl- or Dinitromethylmodified Derivatives of RDX and β-HMX. Comput. Theor. Chem. 2013, 1019: 116-124.
- [19] Wu, Q.; Zhu, W.; Xiao, H. First-principles Study of the High-pressure Behavior of Solid 1,7-Diamino-1,7-dinitrimino-2,4,6-trinitro-2,4,6-triazaheptane. Comput. Theor. Chem. 2014, 1030: 38-43.
- [20] Wu, Q.; Zhu, W.; Xiao, H. Molecular Design of Tetrazole- and Tetrazine-based High-density Energy Compounds with Oxygen Balance Equal to Zero. J. Chem. Eng. Data 2013, 58: 2748-2762.
- [21] Jing, M.; Li, H.; Wang, J.; Shu, Y.; Zhang, X.; Ma, Q.; Huang, Y. Theoretical Investigation on the Structure and Performance of N,N’-azobis-polynitrodiazoles. J. Mol. Model. 2014, 20: 2155.
- [22] Ma, Q.; Jiang, T.; Zhang, X.; Fan, G.; Wang, J.; Huang, J. Theoretical Investigations on 4,4’,5,5’-Tetranitro-2,2’-1H,1’H-2,2’-biimidazole Derivatives as Potential Nitrogen-rich High Energy Materials. J. Phys. Org. Chem. 2015, 28: 31-39.
- [23] Guo, Y.-Y.; Chi, W.-J.; Li, Z.-S.; Li, Q.-S. Molecular Design of N–NO2 Substituted Cycloalkanes Derivatives Cm(N–NO2)m for Energetic Materials with High Detonation Performance and Low Impact Sensitivity. RSC Adv. 2015, 5: 38048-38055.
- [24] Zhang, X. W.; Zhu, W. H.; Xiao, H. M. Theoretical Studies on Heats of Formation, Detonation Properties, and Bond Dissociation Energies of Monofurazan Derivatives. Int. J. Quantum Chem. 2010, 110: 1549-1558.
- [25] Zhang, X. W.; Zhu, W. H.; Xiao, H. M. Comparative Theoretical Studies of Energetic Substituted Carbon- and Nitrogen-bridged Difurazans. J. Phys. Chem. A 2010, 114: 603-612.
- [26] Pan, Y.; Li, J. S.; Cheng, B. B.; Zhu, W. H.; Xia, H. M. Computational Studies on the Heats of Formation, Energetic Properties, and Thermal Stability of Energetic Nitrogen-rich Furazano[3,4-b]pyrazine-based Derivatives. Comput. Theor. Chem. 2012, 992: 110-119.
- [27] Pan, Y.; Zhu, W. H.; Xiao, H. M. Theoretical Studies on the Structures, Heats of Formation, Energetic Properties and Pyrolysis Mechanisms of Nitrogen-Rich Difurazano[3,4-B:3’,4’-E]Piperazine Derivatives and Their Analogues. Struct. Chem. 2013, 24: 1071-1087.
- [28] Wang, K.; Shu, Y.; Liu, N.; Lai, W.; Yu, T.; Ding, X.; Wu, Z. Theoretical Studies on Structure and Performance of [1,2,5]-Oxadiazolo-[3,4-d]-pyridazine-based Derivatives. J. Phys. Org. Chem. 2017, 30: e3591.
- [29] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, Jr. T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O. A.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09. Revision B. 01, Gaussian, Inc, Wallingford, CT, USA 2009.
- [30] Hahre, W. J.; Radom, L.; Schleyer, P. V. R.; Pole, J. A. Ab Initio Molecular Orbital Theory. Wiley-Interscience, New York 1986.
- [31] Chen, P. C.; Chieh, Y. C.; Tzeng, S. C. Density Functional Calculations of the Heats of Formation for Various Aromatic Nitro Compounds. J. Mol. Struct. (THEOCHEM) 2003, 634: 215-224.
- [32] Fan, X. W.; Ju, X. H. Theoretical Studies on Four-membered Ring Compounds with NF2, ONO2, N3, and NO2 Groups. J. Comput. Chem. 2008, 29: 505-513.
- [33] Wei, T.; Zhu, W. H.; Zhang, J. J.; Xiao, H. M. DFT Study on Energetic Tetrazolo-[1,5-b]-1,2,4,5-tetrazine and 1,2,4-Triazolo-[4,3-b]-1,2,4,5-tetrazine derivatives. J. Hazard. Mater. 2010, 179: 581-590.
- [34] Zhou, Y.; Long, X.-P.; Shu, Y.-J. Theoretical Studies on the Heats of Formation, Densities, and Detonation Properties of Substituted s-tetrazine Compounds. J. Mol. Model. 2010, 16: 1021-1027.
- [35] Atkins, P. W. Physical Chemistry. Oxford University Press, Oxford 1982.
- [36] Politzer, P.; Lane, P.; Murray, J. S. Computational Characterization of a Potential Energetic Compound: 1,3,5,7-Tetranitro-2,4,6,8-tetraazacubane. Cent. Eur. J. Energ. Mater. 2011, 8: 39-52.
- [37] Politzer, P.; Murray, J. S. Some Perspectives on Estimating Detonation Properties of C, H, N, O Compounds. Cent. Eur. J. Energ. Mater. 2011, 8: 209-220.
- [38] Politzer, P.; Murray, J. S.; Grice, M. E.; Desalvo, M.; Miller, E. Calculation of Heats of Sublimation and Solid Phase Heats of Formation. Mol. Phys. 1997, 91: 923-928.
- [39] Politzer, P.; Martinez, J.; Murray, J. S.; Concha, M. C.; Toro-Labbé, A. An Electrostatic Interaction Correction for Improved Crystal Density Prediction. Mol. Phys. 2009, 107: 2095-2101.
- [40] Rice, B. M.; Hare, J. J.; Byrd, E. F. C. Accurate Predictions of Crystal Densities Using Quantum Mechanical Molecular Volumes. J. Phys. Chem. A 2007, 111: 10874-10879.
- [41] Kamlet, M. J.; Jacobs, S. J. Chemistry of Detonation. I. A Simple Method for Calculation Detonation Properties of C-H-N-O Explosives. J. Chem. Phys. 1968, 48: 23-35.
- [42] Ravi, P.; Badu, B. K.; Tewari, S. P. Theoretical Investigations on the Structure, Density, Thermodynamic and Performance Properties of Amino-, Methyl-, Nitrosoand Nitrotriazolones. J. Mol. Model. 2013, 19: 33-48.
- [43] Klapötke, T. M. Chemistry of High-Energy Materials. 2nd ed., Gruyter, Berlin 2012; ISBN 978-3-11-027358-8.
- [44] Benson, S. W. Thermochemical Kinetics. 2nd ed., Wiley-Interscience, New York 1976; ISBN 978-0-47-106781-8.
- [45] Li, X.; Zhang, R.; Zhang, X. Computational Study of Imidazole Derivative as High Energetic Materials. J. Hazard. Mater. 2010, 183: 622-631.
- [46] Keshavarz, M. H.; Motamedoshariati, H.; Moghayadnia, R.; Ghanbarzadeh, M.; Azarniamehraban, J. Prediction of Sensitivity of Energetic Compounds with a New Computer Code. Propellants Explos. Pyrotech. 2014, 39: 95-101.
- [47] Nazari, B.; Keshavarz, M. H.; Hamadanian, M.; Mosavi, S.; Ghaedsharafi, A. R.; Pouretedal, H. R. Reliable Prediction of the Condensed (Solid or Liquid) Phase Enthalpy of Formation of Organic Energetic Materials at 298 K through Their Molecular Structures. Fluid Phase Equilibria 2016, 408: 248-258.
- [48] Keshavarz, M. H. Novel Method For Predicting Densities of Polynitro Arene and Polynitro Heteroarene Explosives in Order to Evaluate Their Detonation Performance. J. Hazard. Mater. 2009, 165: 579-588.
- [49] Hamadanian, M.; Keshavarz, M. H.; Nazari, B.; Mohebbi, M. Reliable Method for Safety Assessment of Melting Points of Energetic Compounds. Process Saf. Environ. 2016, 103: 10-22.
- [50] Dean, J. A. LANGE’S Handbook of Chemistry. 15th ed., McGraw-Hill Book Co., New York 1999.
- [51] Afeefy, H. Y.; Liebman, J. F.; Stein, S. E. Neutral Thermochemical Data. In: NIST Chemistry Web Book, NIST Standard Reference Database Number 69. (Linstrom, P. J.; Mallard, W. G., Eds.), National Institute of Standards and Technology, Gaithersburg, MD, 2000; <http://webbook.nist.gov>
- [52] Scott, A. P.; Radom, L. Harmonic Vibrational Frequencies: an Evaluation of Hartree-Fock. Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 1996, 100: 16502-16513.
- [53] Huynh, M. H. V.; Hiskey, M. A.; Chavez, D. E.; Naud, D. L.; Gilardi, R. D. Synthesis, Characterization, and Energetic Properties of Diazido Heteroaromatic Highnitrogen C-N Compound. J. Am. Chem. Soc. 2005, 127: 12537-12543.
- [54] Chung, G.; Schmidt, M. W.; Gordon, M. S. An ab Initio Study of Potential Energy Surfaces for N8 Isomers. J. Phys. Chem. A 2000, 104: 5647-5650.
- [55] Dong, H. S.; Zhou, F. F. High Energy Explosives and Correlative Physical Properties. Science Press, Beijing 1989.
- [56] Keshavarz, M. H.; Kamalvand, M.; Jafari, M.; Zamani, A. An Improved Simple Method for the Calculation of the Detonation Performance of chnofcl, Aluminized and Ammonium Nitrate Explosives. Cent. Eur. J. Energ. Mater. 2016, 13: 381-396.
- [57] Keshavarz, M. H.; Pouretedal, H. R., An Empirical Method For Predicting Detonation Pressure of chnofcl Explosives. Thermochim. Acta 2004, 414: 203-208.
- [58] Sheremetev, A. B.; Mantseva, E. V.; Aleksandrova, N. S.; Kuzmin, V. S.; Khmelnitskii, L. I. Reaction of Nitrofurazans with Sulfur Nucleophiles. Mendelev Commun. 1995, 5: 25-27.
- [59] Sheremetev, A. B.; Semenov, S. E.; Kuzmin, V. S.; Strelenko, Y. A.; Ioffe, S. L. Synthesis and X-ray Crystal Structure of Bis-3,3’-(nitro-NNO-azoxy)-difurazanyl Ether. Chem. Eur. J. 1998, 4: 1023-1026.
- [60] Zhou, Y.; Wang, B.; Wang, X.; Zhou, C.; Huo, H.; Zhang, Y.; Liu, P. Synthesis of Bifurazano[3,4-b:3’,4’-f]furoxano[3’’,4’’-d]oxacyclohetpatriene. Chin. J. Energ. Mater. 2012, 20: 137-138.
- [61] Li, J.-Z.; Fan, X.-Z.; Wang, B.-Z. Review on the Properties and Applications of l,3,3-Trinitroazetidine. Chin. J. Energ. Mater. 2004, 12: 305-308.
- [62] Meyer, R.; Kohler, J.; Homburg, A. Explosives. 5th ed., Wiley-VCH, Weinheim 2002; ISBN 3-527- 30267-0.
- [63] Ravi, P.; Dilip, B. M.; Gore, G. M.; Tewari, S. P.; Sikder, A. K. Review on Melt Cast Explosives. Propellants Explos. Pyrotech. 2011, 36: 393-403.
- [64] Liu, N.; Zeman, S.; Shu, Y.-J.; Wu, Z.-K.; Wang, B.-Z.; Yin, S.-W. Comparative Study of Melting Points of 3,4-Bis(3-nitrofurazan-4-yl)furoxan (DNTF)/1,3,3- Trinitroazetidine (TNAZ) Eutectic Compositions Using Molecular Dynamic Simulations. RSC Adv. 2016, 6: 59141-59149.
- [65] Wang, X.; Wang, B.; Jia, S.; Zhou, Y.; Bi, F.; Ning, Y. Synthesis of Trifurazanooxacyclohetpatriene. Chin. J. Energ. Mater. 2012, 20: 258-259.
- [66] Politzer, P.; Murray, J. S. Some Molecular/Crystalline Factors that Affect the Sensitivities of Energetic Materials: Molecular Surface Electrostatic Potentials, Lattice free Space and Maximum Heat of Detonation per Unit Volume. J. Mol. Model. 2015, 21: 25.
- [67] Politzer, P.; Murray, J. S. Impact Sensitivity and the Maximum Heat of Detonation. J. Mol. Model. 2015, 21: 262.
- [68] Politzer, P.; Murray, J. S. High Performance, Low Sensitivity: Conflicting or Compatible. Propellants Explos. Pyrotech. 2016, 41: 414-425.
- [69] Marecek, P.; Dudek, K. Cast TNAZ Mixtures. New Trends Res. Energ. Mater., Proc. Semin., 5th, Pardubice, Czech Republic 2002, 164-168.
- [70] Yang, Z.; Li, H.; Huang, H.; Zhou, X.; Li, J.; Nie, F. Preparation and Performance of a HNIW/TNT Cocrystal Explosive. Propellants Explos. Pyrotech. 2013, 38: 495-501.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb4a82dc-e431-4aca-aea6-04700f36818e