Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The hydro-mechanical drawing combines conventional deep drawing and sheet hydroforming and is widely used in the automotive industry. In this study, we designed and fabricated an indigenous experimental set-up that is low cost, low weight and portable. This study investigated the deformation of sheet metals into hemispherical cup-shaped parts made of different materials, viz., aluminium 8011 alloys, copper C12200 and steel EN10130 alloys. The initial thickness of sheet metal was 0.4 mm, the most common thickness range used in automotive applications. The deformation behaviour in terms of dome height has been measured by varying the pressure of the fluids. Aluminium 8011 alloy sheets showed a maximum dome height of 11.46 mm at a pressure of 1.47 MPa with no rupture. Steel EN10130 sheets had a maximum dome height of 10.89 mm at a pressure of 9.31 MPa. It was concluded that the behaviours of materials are different in the hydro-mechanical drawing process than in mechanical tests. Copper C12200 sheet showed superior formability with a maximum dome height of 18.91 mm at a pressure of 7.06 MPa than other materials without fracture.
Wydawca
Czasopismo
Rocznik
Tom
Strony
455--469
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Motilal Nehru National Institute of Technology Allahabad, Prayagraj – 211004, India
autor
- Kamla Nehru Institute of Technology, Sultanpur – 228118, India
autor
- Kamla Nehru Institute of Technology, Sultanpur – 228118, India
autor
- Częstochowa University of Technology, Częstochowa, Poland
Bibliografia
- [1] M.-G. Lee, Y.P. Korkolis, and J.H. Kim. Recent developments in hydroforming technology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(4):572–596, 2015. doi: 10.1177/0954405414548463.
- [2] C. Bell, J. Corney, N. Zuelli, and D. Savings. A state of the art review of hydroforming technology. International Journal of Material Forming, 13:789–828, 2020. doi: 10.1007/s12289-019-01507-1.
- [3] F.T. Feyissa and D.R. Kumar. Enhancement of drawability of cryorolled AA5083 alloy sheets by hydroforming. Journal of Materials Research and Technology, 8(1):411–423, 2019. doi:10.1016/j.jmrt.2018.02.012.
- [4] L.H. Lang, Z.R. Wang, D.C. Kang, S.J. Yuan, S.H. Zhang, J. Danckert, and K.B. Nielsen. Hydroforming highlights: sheet hydro-forming and tube hydro-forming. Journal of Materials Processing Technology, 151(1-3):165–177, 2004. doi: 10.1016/j.jmatprotec.2004.04.032
- [5] K. Siegert, M. Häussermann, B. Lösch, and R. Rieger. Recent developments in hydroforming technology, Journal of Materials Processing Technology, 98(2):251–258, 2000. doi: 10.1016/S0924-0136(99)00206-X.
- [6] H. Hu, J.-F. Wang, K.-T. Fan, T.-Y. Chen, and S.-Y. Wang. Development of sheet hydroforming for making an automobile fuel tank. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(4):654–663, 2015. doi: 10.1177/0954405414554666.
- [7] T. Nakagawa, K. Nakamura, and H. Amino. Various applications of hydraulic counterpressure deep drawing. Journal of Materials Processing Technology, 71(1):160–167, 1997. doi: 10.1016/S0924-0136(97)00163-5.
- [8] H. Amino, K. Nakamura, and T. Nakagawa. Counter-pressure deep drawing and its application in the forming of automobile parts. Journal of Materials Processing Technology, 23(3):243–265, 1990. doi: 10.1016/0924-0136(90)90244-O.
- [9] K. Nakamura and T. Nakagawa. Sheet metal forming with hydraulic counter pressure in Japan. CIRP Annals, 36(1):191–194, 1987. doi: 10.1016/S0007-8506(07)62583-9.
- [10] S.H. Zhang, Z.R. Wang, Y. Xu, Z.T. Wang, and L.X. Zhou. Recent developments in sheet hydroforming technology. Journal of Materials Processing Technology, 151(1-3):237–241, 2004. doi: 10.1016/j.jmatprotec.2004.04.054.
- [11] N. Abedrabbo, M.A. Zampaloni, and F. Pourboghrat. Wrinkling control in aluminum sheet hydroforming. International Journal of Mechanical Sciences, 47(3):333–358, 2005. doi: 10.1016/j.ijmecsci.2005.02.003.
- [12] M. Koç and O.N. Cora. Introduction and state of the art of hydroforming. In: M. Koç (editor), Hydroforming for Advanced Manufacturing, pages 1–29, Elsevier, 2008. doi: 10.1533/9781845694418.1.
- [13] M. Chen, X. Xiao, H. Guo, and J. Tong. Deformation behavior, microstructure and mechanical properties of pure copper subjected to tube hydro-forming. Materials Science and Engineering: A, 731 (2018) 331–343. doi: 10.1016/j.msea.2018.06.068.
- [14] A.A. Emiru, D.K. Sinha, A. Kumar, and A. Yadav. Fabrication and characterization of hybrid aluminium (Al6061) metal matrix composite reinforced with SiC, B4C and MoS2 via stir casting. International Journal of Metalcasting, 2022. doi: 10.1007/s40962-022-00800-1.
- [15] F. Hasan, R. Jaiswal, A. Kumar, and A. Yadav. Effect of TiC and graphite reinforcement on hardness and wear behaviour of copper alloy B-RG10 composites fabricated through powder metallurgy. JMST Advances, 4:1–11, 2022. doi: 10.1007/s42791-022-00043-5.
- [16] K.S.A. Ali, V. Mohanavel, S.A. Vendan, M. Ravichandran, A. Yadav, M. Gucwa, and J. Winczek. Mechanical and microstructural characterization of friction stir welded SiC and B4C rein- forced aluminium alloy AA6061 metal matrix composites. Materials, 14(11):3110, 2021. doi: 10.3390/ma14113110.
- [17] L. Prasad, N. Kumar, A. Yadav, A. Kumar, V. Kumar, and J. Winczek. In situ formation of ZrB2 and its influence on wear and mechanical properties of ADC12 alloy mixed matrix composites. Materials, 14(9):2141, 2021. doi: 10.3390/ma14092141.
- [18] S. Thiruvarudchelvan and F. Travis. An exploration of the hydraulic-pressure assisted redrawing of cups. Journal of Materials Processing Technology, 72(1):117–123, 1997. doi: 10.1016/S0924-0136(97)00138-6.
- [19] J.B. Kim, D.W. Lee, D.Y. Yang, and C.S. Park. Investigation into hydro-mechanical reverse redrawing assisted by separate radial pressure—process development and theoretical verification. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 211(6):451–462, 1997. doi: 10.1243/0954405971516419.
- [20] M. Janbakhsh, M. Riahi, and F. Djavanroodi. A practical approach to analysis of hydromechanical deep drawing of superalloy sheet metals using finite element method. International Journal of Advanced Design and Manufacturing Technology, 6(1):1–7, 2013.
- [21] E. Karajibani, R. Hashemi, and M. Sedighi. Forming limit diagram of aluminum-copper two-layer sheets: numerical simulations and experimental verifications. The International Journal of Advanced Manufacturing Technology, 90:2713–2722, 2017. doi: 10.1007/s00170-016-9585-1.
- [22] S. Yaghoubi and F. Fereshteh-Saniee. An investigation on the effects of the process parameters of hydro-mechanical deep drawing on manufacturing high-quality bimetallic spherical-conical cups. The International Journal of Advanced Manufacturing Technology, 110:1805–1818, 2020. doi: 10.1007/s00170-020-05985-5.
- [23] Z.P. Xing, S.B. Kang, and H.W. Kim. Softening behavior of 8011 alloy produced by accumulative roll bonding process. Scripta Materialia, 45(5):597–604, 2001. doi: 10.1016/S1359-6462(01)01069-7.
- [24] A. Hasanbaşoğlu and R. Kaçar. Resistance spot weldability of dissimilar materials (AISI 316L–DIN EN 10130-99 steels). Materials & Design, 28(6):1794–1800, 2007. doi: 10.1016/j.matdes.2006.05.013.
- [25] B. Meng and M.W. Fu. Size effect on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening. Materials & Design, 83:400–412, 2015. doi: 10.1016/j.matdes.2015.06.067.
- [26] A.G. Olabi and A. Alaswad. Experimental and finite element investigation of formability and failures in bi-layered tube hydro-forming. Advances in Engineering Software, 42(10):815–820, 2011. doi: 10.1016/j.advengsoft.2011.05.022.
- [27] M. Rahimi, P. Fojan, L. Gurevich, and A. Afshari. Aluminium Alloy 8011: Surface characteristics. Applied Mechanics and Materials, 719–720:29–37, 2015. doi: 10.4028/www.scientific.net/AMM.719-720.29.
- [28] G. Pantazopoulos. Metallurgical observations on fatigue failure of a bent copper tube. Journal of Failure Analysis and Prevention, 9:270–274,2009. doi: 10.1007/s11668-009-9225-2.
- [29] K.A. Annan, R.C. Nkhoma, and S. Ngomane. Resistance spot welding of a thin 0.7 mm EN10130: DC04 material onto a thicker 2.4 mm 817M40 engineering steel. Journal of Southern African Institute of Mining and Metallurgy, 121(10):1–7, 2021. doi: 10.17159/2411-9717/1597/2021.
- [30] T. Maki and J. Cheng. Sheet hydroforming and other new potential forming technologies. In: IOP Conference Series: Materials Science and Engineering, 418:012117, 2018. doi: 10.1088/1757-899X/418/1/012117.
- [31] A.K. Sharma and D.K. Rout. Finite element analysis of sheet hydro-mechanical forming of circular cup. Journal of Materials Processing Technology, 209(3):1445–1453, 2009. doi:10.1016/j.jmatprotec.2008.03.070.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb47021e-d8db-490b-9630-f9dec207ccf6