PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Baltoscandian Ordovician and Silurian brachiopod carbon and oxygen stable isotope trends: implications for palaeoenvironmental and palaeotemperature changes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oxygen isotope palaeotemperature studies of Paleozoic limestones are based mainly on brachiopod shell material which is resistant to diagenesis and generally precipitated in oxygen isotopic equilibrium with ambient sea water. Here we present brachiopod C and O stable isotopic data from the Baltoscandian Ordovician-Silurian succession, and evaluate palaeotemperature and palaeoenvironmental variability during deposition of the Estonian Shelf facies. As the region has not been influenced significantly by tectonic events or deep burial diagenesis, the carbonate rocks and fossils are well-preserved in most of the locations studied. δ 18O values for the Ordovician and Silurian carbonates and brachiopods range between ~–7 and 0‰. High δ18O values, locally accompanied by higher δ13C values, correspond to cooling if the isotope signal reflects the original oxygen isotopic composition in sea water and vice versa. Several Ordovician-Silurian δ13Cbrac excursions identified on the Estonian Shelf reflect global palaeoenvironmental history and events, being synchronous with previously documented excursions in the bulk carbonate stable isotopic curves. Combining the published and new δ13Cbrac and δ18Cbrac data allows us to address chemostratigraphic correlation of the interval from Lower Ordovician (Floian) up to the topmost Silurian (Přídolí). The δ 18Obrac data corroborate warmer temperatures during Early Ordovician (Floian-Dapingian) and a cooling trend into the Mid-Ordovician documented by previous studies in different palaeobasins. The Hirnatian isotopic carbon excursion (HICE) episode reveals the minimum temperature in this interval and the post-HICE data suggest a rising temperature trend. Another temperature minimum is evident in the strata reflecting the Ireviken Event (Sheinwoodian). Our study shows that brachiopod δ18O values from the Ordovician-Silurian carbonates may tentatively be interpreted as reflecting major temperature trends.
Rocznik
Strony
art. no. 13
Opis fizyczny
Bibliogr. 62 poz., map., wykr.
Twórcy
autor
  • University of Tartu, Department of Geology, Ravila 14a, 50411 Tartu, Estonia
autor
  • University of Tartu, Department of Geology, Ravila 14a, 50411 Tartu, Estonia
autor
  • University of Tartu, Department of Geology, Ravila 14a, 50411 Tartu, Estonia
Bibliografia
  • 1. Ainsaar, L., Kaljo, D., Martma, T., Meidla, T., Männik, P., Nõlvak, J., Tinn, O., 2010. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: a correlation standard and clues to environmental history. Palaeogeography, Palaeoclimatology, Palaeoecology, 294: 189-201. https://doi.org/10.1016/i.palaeo.2010.01.0Q3
  • 2. Ainsaar, L., Truumees, J., Meidla, T., 2015. The position of the Ordovician-Silurian boundary in Estonia tested by high-resolution S13Cchemostratigraphic correlation. In: Chemostratigraphy(ed. M. Ramkumar): 395-412. Elsevier. https://doi.org/10.1016/B978-0-12-419968-2.00015-7
  • 3. Ainsaar, L., Tinn, O., Dronov, A., Kiipli, E., Radzevičius, S., Meidla, T., 2020. Stratigraphy and facies differences of the Middle Darriwilian isotopic carbon excursion (MDICE) in Baltoscandia. Estonian Journal of Earth Sciences, 69: 214-222. https://doi.org/10.3176/earth.2020.16
  • 4. Azmy, K., Veizer, J., Bassett, M.G., Copper, P., 1998. Oxygen and carbon isotopic composition of Silurian brachiopods: implications for coeval seawater and glaciations. GSA Bulletin, 110: 1499-1512. https://doi.org/10.1130/0016-7606(1998)110<1499:OACICO>2 .3.CO;2
  • 5. Bartlett, R., Elrick, M., Wheeley, J.R., Polyak, V., Desrochers, A., Asmerom, Y., 2018. Abrupt global-ocean anoxia duri ng the Late Ordovician-early Silurian detected using uranium isotopes of marine carbonates. Proceedings of the National Academy of Sciences, 115: 5896-5901. https://doi.org/10.1073/pnas.1802438115
  • 6. Bergström, S.M., Schmitz, B., Saltzman, M.R., Huff, W.D., Finney, S., Berry, W., 2010. The Upper Ordovician Guttenberg S13C excursion (GICE) in North America and Baltoscandia: occurrence, chronostratigraphic significance, and paleoenvironmental relationships. GSA Special Papers, 466: 37-67. https://dx.doi.org/10.1130/2010.2466(04)
  • 7. Bond, D.P., Grasby, S.E., 2020. Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation. Geology, 48: 777-781. https://doi.org/10.1130/G47377.1
  • 8. Brand, U., Veizer, J., 1980. Chemical diagenesis of a multicomponent carbonate system; 1, Trace elements. Journal of Sedimentary Research, 50: 1219-1236. https://doi.org/10.1306/212F7BB7-2B24-11D7-8648000102C1 865D
  • 9. Brand, U., Bitner, M.A., Logan, A., Azmy, K., Crippa, G., Angiolini, L., Colin, P., Griesshaber, E., Harper, E.M., Ruggiero, E.T., 2019. Brachiopod-based oxygen-isotope thermometer: update and review. Rivista Italiana di Paleontologia e Stratigrafia, 125: 3. https://dx.doi.org/10.13130/2039-4942/12226
  • 10. Brenchley, P.J., Marshall, J.D., Carden, G.A.F., Robertson, D.B.R., Long, D.G.F., Meidla, T., Hints, L., Anderson, T.F., 1994. Bathymetric and isotopic evidence for a short-lived late Ordovician glaciation in a greenhouse period. Geology, 22: 295-298. https://doi.org/10.1130/0091-7613(1994)022<0295:BAIEFA>2. 3.CO;2.
  • 11. Brenchley, P.J., Marshall, J., Underwood, C.J., 2001. Do all mass extinctions represent an ecological crisis? Evidence from the Late Ordovician. Geological Journal, 36: 329-340. https://doi.org/10.1002/gi.880
  • 12. Brenchley, P.J., Carden, G., Hints, L., Kaljo, D., Marshall, J., Martma, T., Meidla, T., Nolvak, J., 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. GSA Bulletin, 115: 89-104 https://doi.org/10.1130/0016-7606(2003)115<0089:HRSISO>2 .0.CO;2
  • 13. Buggisch, W., Joachimski, M.M., Lehnert, O., Bergström, S.M., Repetski, J.E., Webers, G.F., 2010. Did intense volcanism trigger the first Late Ordovician icehouse? Geology, 38: 327-330. https://doi.org/10.1130/G30577.1
  • 14. Chen, X., Rong, J., Fan, J., Zhan, R., Mitchell, C.E., Harper, D.A., Melchin, M.J., Peng, A., Finney, S.C., Wang, X., 2006. The
  • 15. Global Boundary Stratotype Sect ion and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System). Episodes, 29: 183. https://doi.org/10.18814/epiiugs/2006/v29i3/004
  • 16. Cocks, L.R.M., Torsvik, T.H., 2005. Baltica from the late Precambrian to mid-Paleozoic times: the gain and loss of a terrane's identity. Earth-Science Reviews, 72: 39-66. https://doi.org/10.1016/i.earscirev.2005.04.001
  • 17. Dronov, A., Rozhnov, S., 2007. Climatic changes in the Baltoscandian basin during the Ordovician: sedimentological and palaeontological aspects. Acta Palaeontologica Sinica, 46: 108.
  • 18. Edward, O., Korte, C., Ullmann, C.V., Colmenar, J., Thibault, N., Bagnoli, G., Stouge, S., Rasmussen, C.M., 2022. A Baltic perspective on the Early to Early Late Ordovician S13C and S18O records and its paleoenvironmental significance. Paleoceanography and Paleoclimatology, 37: e2021PA004309. https://doi.org/10.1029/2021PA004309
  • 19. Edwards, C.T., Saltzman, M.R., 2014. Carbon isotope (S13Ccarb) stratigraphy of the Lower-Middle Ordovician (Tremadocian-Darriwilian) in the Great Basin, western United States: implications for global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 399: 1-20. http://dx.doi.org/10.1016/i.palaeo.2014.02.005
  • 20. Epstein, S., Buchsbaum, R., Lowenstam, H., Urey, H.C., 1951. Carbonate-water isotopic temperature scale. GSA Bulletin, 62: 417-426. https://doi.org/10.1130/0016-7606(1951 )62f417:CITS12.0.CO;2
  • 21. Finnegan, S., Bergmann, K., Eiler, J.M., Jones, D.S., Fike, D.A., Eisenman, I., Hughes, N.C., Tripati, A.K., Fischer, W.W., 2011. The magnitude and duration of Late Ordovician-Early Silurian glaciation. Science, 331: 903-906. https://doi.org/10.1126/science.1200803
  • 22. Goldman, D., Sadler, P.M., Leslie, S.A., 2020. Chapter 20. The Ordovician Period. In: Geologic Time Scale 2020 (eds. F.M. Gradstein, J.G. Ogg, M.D. Schmitz and G.M. Ogg): 631-694. Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00020-6
  • 23. Gorjan, P., Kaiho, K., Fike, D.A., Xu, C., 2012. Carbon-and sulfur-isotope geochemistry of the Hirnantian (Late Ordovician) Wangjiawan (Riverside) section, South China: Global correlation and environmental event interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology, 337: 14-22. https://doi:10.1016/i.palaeo.2012.03.021
  • 24. Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., 2020. Geologic Time Scale 2020. Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00002-6
  • 25. Grossman, E.L., 2012. Applying oxygen isotope paleothermometry in deep time. The Paleontological Society Papers, 18: 39-68. https://doi.org/10.1017/S1089332600002540
  • 26. Grossman, E., Joachimski, M., 2020. Oxygen isotope stratigraphy. In: Geologic Time Scale 2020 (eds. F.M. Gradstein, J.G. Ogg, M.D. Schmitz and G.M. Ogg): 279-307. Elsevier. https://doi.org/10.1016/B978-0-12-824360-2.00010-3
  • 27. Gul, B., Ainsaar, L., Meidla, T., 2021. Latest Ordovician-early Silurian palaeoenvironmental changes and palaeotemperature trends indicated by stable carbon and oxygen isotopes from northern Estonia. Estonian Journal of Earth Sciences, 70: 196-209. https://doi.org/10.3176/earth.2021.14
  • 28. Hammarlund, E.U., Dahl, T.W., Harper, D.A., Bond, D.P., Nielsen, A.T., Bjerrum, C.J., Schovsbo, N.H., Schönlaub, H.P., Zalasiewicz, J.A., Canfield, D.E., 2012. A sulfidic driver for the end-Ordovician mass extinction. Earth and Planetary Science Letters, 331: 128-139. https://doi.org/10.1016/i.epsl.2012.02.024
  • 29. Harris, M.T., Sheehan, M., Ainsaar, L., Hints, L., Männik, P., Nõlvak, J., Rubel, M., 2004. Upper Ordovician sequences of western Estonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 210: 135-148. https://doi.org/10.1016/i.palaeo.2004.02.Q45
  • 30. Heath, R.J., Brenchley, J., Marshall, J.D., 1998. Early Silurian carbon and oxygen stable-isotope stratigraphy of Estonia: implications for climate change: Silurian cycles - linkages of dynamic stratigraphy with atmospheric, oceanic and tectonic changes. New York State Museum Bulletin, 491: 313-327.
  • 31. Hints, L., Hints, O., Kaljo, D., Kiipli, T., Männik, P., Nõlvak, J., Pärnaste, H., 2010. Hirnantian (latest Ordovician) bio-and chemostratigraphy of the Stirnas-18 core, western Latvia. Estonian Journal of Earth Sciences, 59: 1-24. https://doi.org/10.3176/earth.2010.1.01
  • 32. Hints, O., Ainsaar, L., Lepland, A., Liiv, M., Männik, P., Meidla, T., Nõlvak, J., Radzevičius, S., 2023. Paired carbon isotope chemostratigraphy across the Ordovician-Silurian boundary in central East Baltic: regional and global signatures. Palaeogeography, Palaeoclimatology, Palaeoecology, 624: 111640. https://doi.org/10.1016/i.palaeo.2023.111640
  • 33. Immenhauser, A., Kenter, J.A., Ganssen, G., Bahamonde, J.R., Van Vliet, A., Saher, M.H., 2002. Origin and significance of isotope shifts in Pennsylvanian carbonates (Asturias, NW Spain). Journal of Sedimentary Research, 72: 82-94. https://doi.org/10.1306/051701720082
  • 34. Jacobsen, S.B., Kaufman, A.J., 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 161: 37-57. https://doi.org/10.1016/S0009-2541 (99)00080-7
  • 35. Kaljo, D., Hints, L., Martma, T., Nõlvak, J., 2001. Carbon isotope stratigraphy in the latest Ordovician of Estonia. Chemical Geology, 175: 49-59. https://doi.org/10.1016/S0009-2541(00)00363-6
  • 36. Kaljo, D., Martma, T., Saadre, T., 2007. Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 245: 138-155. https://doi.org/10.1016/i.palaeo.2006.02.020
  • 37. Kaljo, D., Hints, L., Martma, T., Nõlvak, J., 2017. A multiproxy study of the Puhmu core section (Estonia, Upper Ordovician): consequences for stratigraphy and environmental interpretation. Estonian Journal of Earth Sciences, 66: 77-92. https://doi.org/10.3176/earth.2017.08
  • 38. Lehnert, O., Männik, P., Joachimski, M.M., Calner, M., Frýda, J., 2010. Palaeoclimate perturbations before the Sheinwoodian glaciation: a trigger for extinctions during the 'Ireviken Event'. Palaeogeography, Palaeoclimatology, Palaeoecology, 296: 320-331. https://doi.org/10.1016/i.palaeo.2010.01.009
  • 39. Ling, H.-F., Feng, H.-Z., Pan, J.-Y., Jiang, S.-Y., Chen, Y.-Q., Chen, X., 2007. Carbon isotope variation through the Neoproterozoic Doushantuo and Dengying Formations, South China: implications for chemostratigraphy and paleoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 158-174. https://doi.org/10.1016/i.palaeo.2007.03.023
  • 40. Männik, P., 2014. The Silurian System in Estonia. 4th Annual Meeting of IGCP 591 (eds. H. Bauert, O. Hints, T Meidla and P. Männik): 123-128. Estonia, 10-19 June 2014. Abstracts and Field Guide. University of Tartu, Tartu.
  • 41. Männik, P., Loydell, D.K., Nestor, V., Nõlvak, J., 2015. Integrated Upper Ordovician-lower Silurian biostratigraphy of the Grötlingbo-1 core section, Sweden. GFF, 137: 226-244. https://doi.org/10.1080/11035897.2015.1042032
  • 42. Männik, P., Lehnert, O., Nõlvak, J., Joachimski, M.M., 2021. Climate changes in the pre-Hirnantian Late Ordovician based on 818Ophos studies from Estonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 569: 110347. https://doi.org/10.1016/i.palaeo.2021.110347
  • 43. Melchin, M.J., Holmden, C.E., 2006. Carbon isotope chemostratigraphy of the Llandovery in Arctic Canada: implications for global correlation and sea-level change. GFF 128: 173-180. https://doi.org/10.1080/11035890601282173
  • 44. Meidla, T., Ainsaar, L., Hints, O., 2014. The Ordovician System in Estonia. 4th Annual Meeti ng of IGCP 591 (eds. H. Bauert, O. Hints, T Meidla and P. Männik): 116-122. Estonia, 10-19 June 2014. Abstracts and Field Guide. University of Tartu, Tartu.
  • 45. Meidla, T., Truuver, K., Tinn, O., Ainsaar, L., 2020. Ostracods of the Ordovician-Silurian boundary beds: Jūrmala core (Latvia) and its implications for Baltic stratigraphy. Estonian Journal of Earth Sciences, 69: 233-247. https://doi.org/10.3176/earth.2020.20
  • 46. Meidla, T., Ainsaar, L., Hints, O., Radzevičius, S., 2023. Ordovician of the Eastern Baltic palaeobasin and the Tornquist Sea margin of Baltica. Geological Society Special Publications, 532: 317-343. https://doi.org/10.1144/SP532-2022-14
  • 47. Munnecke, A., Calner, M., Harper, D.A., Servais, T., 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: a synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 296: 389-413. https://doi.org/10.1016/i.palaeo.2010.08.001
  • 48. Nestor, H., Einasto, R., 1997. Ordovician and Silurian carbonate sedimentation basin. In: Geology and Mineral Resources of Estonia (eds. A. Raukas and A. Teedumäe): 192-204. Estonian Academy Publishers, Tallinn.
  • 49. Quinton, P.C., Law, S., MacLeod, K.G., Herrmann, A.D., Haynes, J.T., Leslie, S.A., 2018. Testing the early Late Ordovician coolwater hypothesis with oxygen isotopes from conodont apatite. Geological Magazine, 155: 1727-1741. https://doi.org/10.1017/S0016756817000589
  • 50. Rasmussen, C.M.O., Ullmann, C.V., Jakobsen, K.G., Lindskog, A., Hansen, J., Hansen, T., Eriksson, M.E., Dronov, A., Frei, R., Korte, C., Nielsen, A.T., Harper, D.A.T., 2016. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Scientific Reports, 6: 1-9. https://doi.org/10.1038/srep18884
  • 51. Rong, J., Melchin, M., Williams, S.H., Koren, T.N., Verniers, J., 2008. Report of the restudy of the defined global stratotype of the base of the Silurian System. Episodes, 31: 315-318. https://doi.org/10.18814/epiiugs/2008/v31i3/005
  • 52. Rosenau, N.A., Herrmann, A.D., Leslie, S.A., 2012. Conodont apatite S18O values from a platform margin setting, Oklahoma, USA: implications for initiation of Late Ordovician icehouse conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 315: 172-180. https://doi.org/10.1016/i.palaeo.2011.12.003
  • 53. Saltzman, M.R., Young, S.A., 2005. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology, 33: 109-112. https://doi.org/10.1130/G21219.1
  • 54. Sheehan, M., 2001. The late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences, 29: 331-364. https://doi.org/10.1146/annurev.earth.29.1.331
  • 55. Shields, G.A., Carden, G.A., Veizer, J., Meidla, T., Rong, J.-Y., Li, R.-Y., 2003. Sr, C, and O isotope geochemistry of Ordovician brachiopods: a major isotopic event around the Middle-Late Ordovician transition. Geochimica et Cosmochimica Acta, 67: 2005-2025. https://doi.org/10.1016/S0016-7037(02)01116-X
  • 56. Swart, K.J.S., 2015. The geochemistry of carbonate diagenesis. The past, present and future. Sedimentology, 62: 1233-1304. https://doi.org/10.1111/sed.12205
  • 57. Trotter, J.A., Williams, I.S., Barnes, C.R., Lécuyer, C., Nicoll, R.S., 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 321: 550-554. https://doi.org/10.1126/science.1155814
  • 58. Trotter, J.A., Williams, I.S., Barnes, C.R., Männik, P., Simpson, A., 2016. New conodont S18O records of Silurian climate change: implications for environmental and biological events. Palaeogeography, Palaeoclimatology, Palaeoecology, 443: 34-48. https://doi.org/10.1016/j.palaeo.2015.11.011
  • 59. Torsvik, T.H., Cocks, L.R.M., 2016. Earth History and Palaeogeography. Cambridge University Press. https://dx.doi.org/10.1017/9781316225523
  • 60. Urey, H.C., 1947. The thermodynamic properties of isotopic substances. Journal of the Chemical Society: 562-581. https://doi.org/10.1039/ir9470000562
  • 61. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A., Diener, A., Ebneth, S., Godderis, Y., 1999. 87Sr/86Sr, 513C and 518O evolution of Phanerozoic seawater. Chemical Geology, 161: 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9
  • 62. Zhang, J., Lyons, T.W., Li, C., Fang, X., Chen, Q., Botting, J., Zhang, Y., 2022. What triggered the Late Ordovician mass extinction (LOME)? Perspectives from geobiology and biogeochemical modeling. Global and Planetary Change, 216: 103917. https://doi.org/10.1016/i.gloplacha.2022.103917
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb469f3c-604e-40cf-ae77-826e003c97d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.