Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The simulation tests results of the rail vehicle – track system model are presented in this article. The purpose of the research was to determine the influence of chosen vehicle suspension element parameters on stability and safety of motion. Simulation model of 4-axle passengers coach was created with use the VI-Rail software. Damping component of the second stage elastic-damping element in the longitudinal direction was selected. For two values of the damping parameter applied, such a few system parameters were determined: critical velocity, values of solutions in a wide velocity range, lateral wheelsettrack forces and values of safety factor against derailment. The vehicle motion was simulated along a straight track and curved track with a radius of R = 3000, 4000 and 6000 m. Comparison of vehicle model features for particular damping component values were done. The results are presented in the form of diagrams illustrating changes in the tested system parameters as a function of vehicle velocity.
Czasopismo
Rocznik
Tom
Strony
3--14
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Faculty of Transport, Warsaw University of Technology, Poland
Bibliografia
- [1] Bogusz W. Technical stability (in Polish Stateczność techniczna). PWN. Warsaw 1972.
- [2] Bruni S, Vinolas J, Berg M, Polach O, Stichel S. Modeling of suspension components in a rail vehicle dynamics context. Vehicle Syst Dyn. 2011;49(7): 1021-1072. https://doi.org/10.1080/00423114.2011.586430
- [3] Dusza M, Zboiński K. The wheel-rail coefficient of friction influence on rail vehicle models lateral stability – bifurcation approach. Proceedings of 14th Mini Conference on Vehicle System Dynamics, Identification and Anomalies. Budapest, 10-12 November 2014: 123-134.
- [4] Dusza M. Rail vehicle model possibility of safe motion analysis in the overcritical velocity range. Proceedings of the 11th International Conference on Railway Bogies and Running Gears. In: Zobory I. (Ed.), SSME/GTE, Budapest, 2020:159-168.
- [5] European Standard PN-EN 14363+A1:2019-02. [6] Evans J, Berg M. Challenges in simulation of rail vehicle dynamics. Vehicle Syst Dyn. 2009;47(8): 1023-1048. https://doi.org/10.1080/00423110903071674
- [7] Iwnicki S. (ed.). Handbook of railway vehicle dynamics. CRC Press Inc. 2019. https://doi.org/10.1201/9780429469398
- [8] Kalker JJ. A fast algorithm for the simplified theory of rolling contact. Vehicle Syst Dyn. 1982;(11):1-13. https://doi.org/10.1080/00423118208968684
- [9] Kass-Petersen C, True H. A bifurcation analysis of nonlinear oscillations in railway vehicles. Vehicle Sys Dyn. 1984;(13):655-665. https://doi.org/10.1080/00423118308965288
- [10] Knothe K, Böhm F. History of stability of railway and road vehicles. Vehicle Syst Dyn. 1999;(31):283-323. https://doi.org/10.1076/vesd.31.5.283.8362 Passenger vehicle suspension parameters influence on vehicle-track model solutions RAIL VEHICLES/POJAZDY SZYNOWE 2022;(3-4) 13
- [11] Piotrowski J. Kalker’s algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy. Vehicle Syst Dyn. 2010; 48(7):869-889. https://doi.org/10.1080/00423110903178495
- [12] Shabana AA, Zaazaa KE, Sugiyama H. Railroad Vehicle Dynamics: A Computational Approach. Taylor & Francis LLC and the CRC. 2008.
- [13] Sun J, Meli E, Cai W, Gao H, Chi M, Rindi A et al. A signal analysis based hunting instability detection methodology for high-speed railway vehicles. Vehicle Syst Dyn. 2021; 59(10):1461-1483. https://doi.org/10.1080/00423114.2020.1763407
- [14] True H, Jensen JC. Parameter study of hunting and chaos in railway vehicle dynamics. In: Shen Z. (Ed.) Proc. 13th IAVSD Symposium on The Dynamics of Vehicles on Roads and on Tracks. Vehicle Syst Dyn. 1994;(23):508-520.
- [15] True H. On the theory of nonlinear dynamics and its applications in vehicle systems dynamics. Vehicle Syst Dyn. 1999;(31):393-421. https://doi.org/10.1076/vesd.31.5.393.8361
- [16] Wang X, Liu B, Gialleonardo ED, Kovacic I, Bruni S. Application of semi-active yow dampers for the improvement of the stability of high-speed rail vehicles: mathematical models and numerical simulation. Vehicle Syst Dyn. 2022;60(8):2608-2635.https://doi.org/10.1080/00423114.2021.1912366
- [17] Wilson N, Fires R, Witte M, Haigermoser A, Wrang M, Evans J et al. Assessment of safety against derailment using simulations and vehicle acceptance test: a worldwide comparison of state-of-the-art assessment methods. Vehicle Syst Dyn. 2011; 49(7):1113-1157. https://doi.org/10.1080/00423114.2011.586706
- [18] Zboiński K, Dusza M. Self-exciting vibrations and Hopf’s bifurcation in non-linear stability analysis of rail vehicles in curved track. Eur J Mech A-Solid. 2010;29(2):190-203.https://doi.org/10.1016/j.euromechsol.2009.10.001
- [19] Zboiński K, Dusza M. Extended study of rail vehicle lateral stability in a curved track. Vehicle Syst Dyn. 2011;49(5):789-810.https://doi.org/10.1080/00423111003770447
- [20] Zboiński K, Dusza M. Bifurcation analysis of 4-axle rail vehicle models in a curved track. Nonlinear Dynam. 2017;89(2):863-885. https://doi.org/10.1007/s11071-017-3489-y
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb415ce7-5b90-4d76-94ed-24ff2becc2ea