PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Własności optyczne i radiacyjne aerozolu nad południowo-wschodnią Polską emitowanego podczas pożarów biomasy w Kalifornii we wrześniu 2020 roku

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Optical and radiative properties of an aerosol over South-Eastern Poland emitted during biomass burning in California in September 2020
Języki publikacji
PL
Abstrakty
PL
Celem pracy jest określenie własności optycznych i radiacyjnych aerozolu obserwowanego podczas transportu dalekiego zasięgu zanieczyszczeń wyemitowanych w Ameryce Północnej we wrześniu 2020 r. Badania zostały zrealizowane w oparciu o dane pomiarowe pozyskane z fotometru słonecznego, lidaru oraz radiometru słonecznego (pyranometru) w stacji badawczej SolarAOT w Strzyżowie na Podkarpaciu, a także w oparciu o wyniki symulacji modelem trajektorii wstecznych, modelem transferu radiacji i transportu zanieczyszczeń. Wyniki badań wskazują na obecność silnie rozpraszających warstw aerozolu w całej troposferze oraz w dolnej stratosferze (pod koniec okresu pomiarowego). Obecność aerozolu w dolnej stratosferze jest w ostatnich latach bardzo rzadko obserwowana. Mimo tego wartości aerozolowej grubości optycznej były poniżej średniej wieloletniej. Obecność aerozolu w atmosferze spowodowała redukcję promieniowania dochodzącego do powierzchni ziemi w godzinach południowych o około 32 W/m2. Wymuszanie radiacyjne aerozolu podczas bezchmurnych warunków wynosiło ok -9 W/m2 na powierzchni ziemi i -5,2 W/m2 na górnej granicy atmosfery. Oszacowane wartości efektywności wymuszania radiacyjnego w połączeniu z pomiarami albedo pojedynczego rozpraszania wskazują na napływ umiarkowanie absorbującego aerozolu.
EN
The aim of the study is to determine the optical and radiation properties of the aerosol observed during long-range transport of biomass burning pollution emitted in North America in September 2020. The research was carried out at SolarAOT research station in Strzyzow (south-eastern Poland) on the basis of measurement data obtained from a sun photometer, aerosol lidar and solar radiometer (pyranometer), as well as on the basis of simulation results with backtrajetories model, radiation transfer and aerosol transport model. The results indicate the presence of highly scattering aerosol layers throughout the troposphere and in the lower stratosphere (during the end of the measuring period). The presence of an aerosol in the lower stratosphere has been very rarely observed in recent years due low stratovolcanic activity. Despite this, the aerosol optical thickness was below the long-term average. The presence of the aerosol in the atmosphere reduced the radiation reaching the Earth’s surface at noon by about 32 W/m2. The aerosol direct radiative forcing of the during clear conditions was about -9 W/m2 at the Earth’s surface and -5.2 W/m2 at the top of the atmosphere. The estimated radiative forcing efficiency in combination with the single scattering albedo measurements indicate moderately absorbing particles.
Rocznik
Tom
Strony
209--225
Opis fizyczny
Bibliogr. 33 poz., fot., tab., wykr.
Twórcy
  • Uniwersytet Warszawski, WydziaŁ Fizyki
  • Instytut Oceanologii Polskiej Akademii Nauk
  • Stacja Badawcza Tansferu Radiacyjnego SolarAOT
Bibliografia
  • [1] Abatzoglou J.T., Williams A.P., Barbero R., 2019, Global emergence of anthropogenic climate change in fire weather indices, Geophysical Research Letters, 46 (1), 326-336, DOI: 10.1029/2018GL080959
  • [2] Amiridis V., Balis D., Giannakaki E., Stohl A., Kazadzis S., Koukouli M., Zanis P., 2008, Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements, Atmospheric Chemistry and Physics, 9 (7), 2431-2440, DOI: 10.5194/acp-9-2431-2009
  • [3] Andela N., Morton D.C., Giglio L., Chen Y., Van Der Werf G.R., Kasibhatla P.S., DeFries R.S., Collatz G.J., Hantson S., Kloster S., Bachelet D., 2017, A human-driven decline in global burned area, Science, 356 (6345), 1356-1362, DOI: 10.1126/science.aal4108
  • [4] Doerr S.H., Santín C., 2016, Global trends in wildfire and its impacts: perceptions versus realities in a changing world, Philosophical Transactions of the Royal Society B: Biological Sciences, 371 (1696), DOI: 10.1098/rstb.2015.0345
  • [5] Eck T.F., Holben B.N., Ward D.E., Mukelabai M.M., Dubovik O., Smirnov A., Schafer J.S., Hsu N.C., Piketh S.J., Queface A., Le Roux J., Swap R.J., Slutsker I., 2003, Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements, Journal of Geophysical Research, 108 (D13), DOI: 10.1029/2002JD002321, D13
  • [6] Fierli F., Smiljanic I., 2020, Data from multiple satellites and instruments can be used to investigate the impact the extensive California fires that ravaged the US state in 2020 had on atmospheric composition, EUMETSAT, dostępne online https://www.eumetsat.int/impact-california-2020-fires-atmospheric-composition (04.11.2021).
  • [7] Fu Q., Liou K.N., 1992, On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres, Journal of Atmospheric Sciences, 49 (22), 2139-2156, DOI: 10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2
  • [8] Gelaro R., McCarty W., Suarez M.J., Todling R., Molod A., Takacs L., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A.M., Gu W., Kim G.-K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B., 2017, The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), Journal of Climate, 30 (14), 5419-5454, DOI: 10.1175/JCLI-D-16-0758.1
  • [9] Holben B.N., Eck T.F., Slutsker I., Tanré D., Buis J.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y.J., Nakajima T., Lavenu F., Jankowiak I., Smirnov A., 1998, AERONET - A federated instrument network and data archive for aerosol characterization, Remote Sensing of Environment, 66 (1), 1-16, DOI: 10.1016/S0034-4257(98)00031-5
  • [10] IPCC, 2018, Global warming of 1.5°C. An IPCC Special Report on the impacts of global Warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, IPCC, dostępne online https://www.ipcc.ch/sr15/ (04.11.2021).
  • [11] Janicka L., Stachlewska I.S., 2019, Properties of biomass burning aerosol mixtures derived at fine temporal and spatial scales from Raman lidar measurements: Part I optical properties, Atmospheric Chemistry and Physics, DOI: 10.5194/acp-2019-207
  • [12] Jiang Y., Yang X., Liu X., Qian Y., Zhang K., Wang M., Li F., Wang Y., Lu Z., 2020, Impacts of wildfire aerosols on global energy budget and climate: the role of climate feedbacks, Journal of Climate, 33 (8), 3351-3366, DOI: 10.1175/JCLI-D-19-0572.1
  • [13] Klett J.D., 1981, Stable analytical inversion solution for processing lidar returns, Applied Optics, 20 (2), 211-220, DOI: 10.1364/AO.20.000211
  • [14] Klett J.D., 1985, Lidar inversion with variable backscatter/extinction ratios, Applied Optics, 24 (11), 1638-1643, DOI: 10.1364/AO.24.001638
  • [15] Liu S., Aiken A.C., Arata C., Dubey M.K., Stockwell C.E., Yokelson R.J., Stone E.A., Jayarathne T., Robinson A.L., DeMott P.J., Kreidenweis S.M., 2014, Aerosol single scattering albedo dependence on biomass combustion efficiency: laboratory and field studies, Geophysical Research Letters, 41 (2), 742-748, DOI: 10.1002/2013GL058392
  • [16] Lynch P., Reid J.S., Westphal D.L., Zhang J., Hogan T.F., Hyer E.J., Curtis C.A., Hegg D.A., Shi Y., Campbell J.R., Rubin J.I., Sessions W.R., Turk F.J., Walker A.L., 2016, An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences, Geoscientific Model Development, 9 (4), 1489-1522, DOI: 10.5194/gmd-9-1489-2016
  • [17] Markowicz K.M., Chilinski M.T., Lisok J., Zawadzka O., Stachlewska I.S., Janicka L., Rozwadowska A., Makuch P., Pakszys P., Zieliński T., Petelski T., Posyniak M., Pietruczuk A., Szkop A., Westphal D.L., 2016, Study of aerosol optical properties during long-range transport of biomass burning from Canada to Central Europe in July 2013, Journal of Aerosol Science, 101, 156-173, DOI: 10.1016/j.jaerosci.2016.08.006
  • [18] Markowicz K.M., Stachlewska I.S., Chilinski M.T., Zawadzka-Manko O., Janicka Ł., Szczepanik D., Wang D., Kumala W., Makuch P., Markuszewski P., Rozwadowska A., Petelski T., Zieliński T., Posyniak M., Szkop A., Pietruczuk A., Chojnicki B.H., Harenda K.H., Poczta P., Uscka-Kowalkowska J., Strużewska J., Kaminski J.W., Werner M., Kryza M., Drzeniecka-Osiadacz A., Sawiński T., Remut A., Miętus M., Wiejak K., Markowicz J., 2021, A decade of the Poland-AOD aerosol research network observations, praca w trakcie recenzji do magazynu Atmosphere.
  • [19] Markowicz K.M., Zawadzka-Manko O., Lisok J., Chilinski M.T., Xian P., 2020, The impact of moderately absorbing aerosol on surface sensible, latent, and net radiative fluxes during the summer of 2015 in Central Europe, Journal of Aerosol Science, 151, DOI: 10.1016/j.jaerosci.2020.105627
  • [20] Nicolae D., Nemuc A., Muller D., Talianu C., Vasilescu J., Belegante L., Kolgotin A., 2013, Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry, Journal of Geophysical Research. Atmospheres, 118 (7), 2956-2965, DOI: 10.1002/jgrd.50324
  • [21] O’Neill N.T., Eck T.F., Smirnov A., Holben B.N., Thulasiraman S., 2003, Spectral discrimination of coarse and fine mode optical depth, Journal of Geophysical Research. Atmospheres, 108 (D17), DOI: 10.1029/2002JD002975
  • [22] Pereira G., Shimabukuro Y.E., Moraes E.C., Freitas S.R., Cardozo F.S., Longo K.M., 2011, Monitoring the transport of biomass burning emission in South America, Atmospheric Pollution Research, 2 (3), 247-254, DOI: 10.5094/APR.2011.031
  • [23] Pietruczuk A., Chaikovsky A., 2012, Variability of aerosol properties during the 2007-2010 spring seasons over central Europe, Acta Geophysica, 60, 1338-1358, DOI: 10.2478/s11600-012-0017-9
  • [24] Randles C.A., da Silva A., Buchard V., Colarco P.R., Darmenov A.S., Govindaraju R.C., Smirnov A., Ferrare R.A., Hair J.W., Shinozuka Y., Flynn C., 2017, The MERRA-2 Aerosol Reanalysis, 1980-onward, Part I: System description and data assimilation evaluation, Journal of Climate, 30 (17), 6823-6850, DOI: 10.1175/JCLI-D-16-0609.1
  • [25] Shi S., Chenga T., Gu X., Guo H., Wu Y., Wang Y., 2019, Biomass burning aerosol characteristics for different vegetation types in different aging periods, Environment International, 126, 504-511, DOI: 10.1016/j.envint.2019.02.073
  • [26] Stachlewska I.S., Samson M., Zawadzka O., Harenda K.M., Janicka L., Poczta P., Szczepanik D., Heese B., Wang D., Borek K., Tetoni E., Proestakis E., Siomos N., Nemuc A., Chojnicki B.H., Markowicz K.M., Pietruczuk A., Szkop A., Althausen D., Stebel K., Schuettemeyer D., Zehner C., 2018, Modification of local urban aerosol properties by long-range transport of biomass burning aerosol, Remote Sensing, 10 (3), DOI: 10.3390/rs10030412
  • [27] Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F., 2015, NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System, Bulletin of the American Meteorological Society, 96 (12), 2059-2077, DOI: 10.1175/BAMS-D-14-00110.1
  • [28] Stelmaszczyk K., Dell’Aglio M., Chudzyński S., Stacewicz T., Wöste L., 2005, Analytical function for lidar geometrical compression factor calculation, Applied Optics, 44 (7), 1323-1331, DOI: 10.1364/AO.44.001323
  • [29] Szczepanik D., Markowicz K.M., 2018, The relation between columnar and surface aerosol optical properties in a back-ground environment, Atmospheric Pollution Research, 9 (2), 246-256, DOI: 10.1016/j.apr.2017.10.001
  • [30] Takemura T., Nakajima T., Dubovik O., Holben B.N., Kinne S., 2002, Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model, Journal of Climate, 15 (4), 333-352, DOI: 10.1175/1520-0442(2002)015<0333:SSAARF>2.0.CO;2
  • [31] Tang R., Huang X., Zhou D., Ding A., 2020, Biomass-burning-induced surface darkening and its impact on regional me-teorology in eastern China, Atmospheric Chemistry and Physics, 20 (10), 6177-6191, DOI: 10.5194/acp-20-6177-2020
  • [32] Vadrevu K.P., Lasko K., Giglio L., Justice C., 2015, Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia, Environmental Research Letters, 10 (10), DOI: 10.1088/1748-9326/10/10/105003
  • [33] Williams A.P., Abatzoglou J.T., Gershunov A., Guzman-Morales J., Bishop D.A., Balch J.K., Lettenmaier D.P., 2019, Observed impacts of anthropogenic climate change on wildfire in California, Earth’s Future, 7 (8), 892-910, DOI: 10.1029/2019EF001210
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb401303-c51b-4949-b647-5769bcb88f3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.