Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Production of succinic acid from bio-fraction of municipal waste and membrane pre-treatment of the fermentation liquor
Języki publikacji
Abstrakty
This study presents sustainable succinic acid production from organic fraction of household kitchen waste (OFHKW), treated with enzymatic hydrolysis. For fermentation, Actinobacillus succinogenes was used, which consumes CO2 during the process. Cellulose conversion efficiency reached 88-90% at a substrate loading of 15-20% dry matter. It was found that in tests with a biomass content of up to 20% (w/v, dry matter), cellulose and hemicellulose were hydrolyzed without a lag phase. However, for the sample with the highest biomass content tested (25% dry matter), glucose and xylose release started after approximately 6–8 hours of lag phase, indicating that the process conditions were not optimal. Enzymatic hydrolysis of OFHKW at biomass loading of 20% (dry matter) resulted in a final concentration of fermen-table sugars 70.3±3.0 g/L and can be treated as a promising feedstock for succinic production. The efficiency of succinic acid production was 75.0%±1.8, which is at the upper range of values recorded for waste substrates, rich in cellulose and hemicellulose compounds. The aim of the presented research was also to test membrane processes, for the purification of fermentation liquors. Since organic acids (including succinic acid) can be effectively retained or passed through membranes, by regulating the pH of the feed stream, an attempt was made to purify the resulting liquor using a SW30XLE (100 Da) membrane. The SW30XLE membrane (100 Da) allowed most of the succinic acid to be retained, regardless of the pH of the feed solution. However, the pH value had a significant impact on the separation of other by-products (acetic and formic acids). Under filtration conditions with a pH of 3.0 (acids in the non-ionized form), most of the acetic and formic acids (>90%) were transferred to the permeate. At the same time, 96.0±1.7% of the succinic acid, the target fermentation product, was recovered in the retentate. In this study, it was clearly shown that membrane separation can be considered as an effective method of succinic broths purification.
Rocznik
Tom
Strony
9--17
Opis fizyczny
Bibliogr. 17 poz., tab., wykr.
Twórcy
autor
- University of Bielsko-Biala, Institute of Engineering Sciences, Willowa 2, 43-309 Bielsko-Biała, Poland
Bibliografia
- 1. Babaei M., Tsapekos P., Alvarado-Morales M., Hosseini M., Ebrahimi S., Niaei A., Angelidaki I. 2019. Valorization of organic waste with simultaneous biogas upgrading for the production of succinic acid. Biochemical Engineering Journal, 147, 136–145.
- 2. Baird R.B., Eaton A.D., Rice E.W. 2017. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA.
- 3. Cheng K.K., Zhao X.B., Zeng J., Zhang J.A. 2012. Biotechnological production of succinic acid: Current state and perspectives. Biofuels Bioproducts and Biorefining, 6, 302–318.
- 4. da Silva A.S., Espinheira R.P., Teixeira R.S.S., de Souza M.F., Ferreira-Leitão V., Bon E.P.S. 2020. Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: A critical review. Biotechnology for Biofuels, 13, 58.
- 5. Dąbkowska K., Alvarado-Morales M., Kuglarz M., Angelidaki I. 2019. Miscanthus straw as substrate for biosuccinic acid production: Focusing on pretreatment and downstream processing. Bioresource Technology, 278, 82–91.
- 6. Dessie W., Xin F., Zhang W., Jiang Y., Wu H., Ma J., Jiang M. 2018. Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Applied Microbiology and Biotechnology, 102, 9893–9910.
- 7. Gunnarsson I.B., Kuglarz M., Karakashev D., Angelidaki I. 2015. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.). Bioresource Tech-nology, 182, 58–66.
- 8. Herselman J., Bradfield M.F.A., Vijayan U., Nicol W. 2017. The effect of carbon dioxide availability on succinic acid production with biofilms of Actinobacillus succinogenes. Biochemical Engineering Journal, 117A, 218–225.
- 9. Kuglarz M., Angelidaki I. 2023. Succinic Production from Source-Separated Kitchen Biowaste in a Biorefinery Concept: Focusing on Alternative Carbon Dioxide Source for Fermentation Processes. Fermentation, 9(3), 259.
- 10. Kuglarz M., Grübel K., Bohdziewicz J. 2017. Utilization of membrane processes for separation of succinic acid after fermentation of Miscanthus biomass. Desalination and Water Treatment, 73, 155–163.
- 11. Mancini E., Ramin P., Styrbæck P., Bjergholt C., Mansouri S.S., Gernaey K.V., Luo J., Pinelo M. 2022. Separation of succinic acid from fermentation broth: dielectric exclusion, Donnan effect and diffusion as the most influential mass transfer mechanisms. Separation and Purification Technology, 281, 119904.
- 12. Pateraki C., Patsalou M., Vlysidis A., Kopsahelis N., Webb, C., Koutinas A.A., Koutinas M. 2016. Actinobacillus succinogenes: Advances on succinic acid production and prospects for development of integrated biorefineries. Biochemical Engineering Journal, 112, 285–303.
- 13. Salvachua D., Mohagheghi A., Smith H., Bradfield M.F.A., Nicol W., Black B.A., Biddy M.J., Dowe N., Beckham G.T. 2016. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. Biotechnology for Biofuels, 9, 28.
- 14. Sluiter A., Hames B., Ruiz R., Scarlata C., Sluiter J., Templeton D., Crocker D. 2008. Determination of Structural Carbohydrates and Lignin in Biomass. Laboratory Analytical Procedure, 1617, 1–16.
- 15. Stylianou E., Pateraki C., Ladakis D., Cruz-Fernández M., Latorre-Sánchez M., Coll C., Koutinas A. 2020. Evaluation of organic fractions of municipal solid waste as renewable feedstock for succinic acid production. Biotechnology for Biofuels, 13, 72.
- 16. Tan J.P., Luthfi A.A.I., Manaf S.F.A., Wu T.Y., Jahim J.M. 2018. Incorporation of CO2 during the production of succinic acid from sustainable oil palm frond juice. Journal of CO2 Utilisation, 26, 595–601.
- 17. Zou W., Zhu L.W., Li H.M., Tang Y.J. 2011. Significance of CO2 donor on the production of succinic acid by Actinobacillus succinogenes ATCC 55618. Microbial Cell Factories, 10, 87.
Uwagi
Przedstawione w pracy badania były wspierane i finansowane przez NAWA (Narodowa Agencja Wymiany Akademickiej) w ramach projektu PPN/BEK/2019/1/00411.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb387b97-b898-4dfd-b7ea-3179a7e9bfd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.