PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation of the accuracy of geodetic automated measurement system based on GNSS platform for continuous monitoring of surface movements in post-mining areas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem involving the monitoring of surface ground movements in post-mining areas is particularly important during the period of mine closures. During or after flooding of a mine, mechanical properties of the rock mass may be impaired, and this may trigger subsidence, surface landslides, uplift, sinkholes or seismic activity. It is, therefore, important to examine and select updating methods and plans for long-term monitoring of post-mining areas to mitigate seismic hazards or surface deformation during and after mine closure. The research assumed the implementation of continuous monitoring of surface movements using the Global Navigation Satellite System (GNSS) in the area of a closed hard coal mine ‘Kazimierz-Juliusz’, located in Poland. In order to ensure displacement measurement results with the accuracy of several millimetres, the accuracy of multi-GNSS observations carried out in real time as a combination of four global navigation systems, Global Positioning System (GPS), Globalnaja Navigacionnaja Sputnikova Sistema (GLONASS), Galileo and BeiDou, was determined. The article presents the results of empirical research conducted at four reference points. The test observations were made in variants comprising measurements based on: GPS, GPS and GLONASS systems, GPS, GLONASS and Galileo systems, GPS, GLONASS, Galileo and BeiDou systems. For each adopted solution, daily measurement sessions were performed using the RTK technique. The test results were subjected to accuracy analyses. Based on the obtained results, it was found that GNSS measurements should be carried out with the use of three navigation systems (GPS, GLONASS, Galileo), as an optimal solution for the needs of continuous geodetic monitoring in the area of the study.
Rocznik
Tom
Strony
47--57
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, Akademicka 2, 44-100 Gliwice, Poland
  • Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
Bibliografia
  • [1] Avallone, A., Marzario, M., Cirella, A., Piatanesi, A., Rovelli, A., Di Alessandro, C., D’Anastasio, E., D’Agostino, N., Giuliani, R., and Mattone, M. (2011). Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: The case of the Mw 6.3 L’Aquila (central Italy) event. Journal of Geophysical Research: Solid Earth, 116(B2), doi:10.1029/2010JB007834.
  • [2] Baryła, R. and Paziewski, J. (2012). Główne założenia koncepcji badania deformacji terenu na podstawie satelitarnych pomiarów GPS sieci kontrolnej. Biuletyn Wojskowej Akademii Technicznej, 61(2):39–57.
  • [3] Blachowski, J., Milczarek, W., and Cacoń, S. (2010). Project of a rock mass surface deformation monitoring system in the Walbrzych coal basin. Acta Geodynamica et Geomaterialia, 7(3):349–354.
  • [4] Bock, Y., Melgar, D., and Crowell, B. W. (2011). Real-time strong-motion broadband displacements from collocated GPS and accelerometers. Bulletin of the Seismological Society of America, 101(6):2904–2925, doi:10.1785/0120110007.
  • [5] Dawidowicz, K. (2015). Network real-time kinematic approach for normal height determination on ASG-EUPOS system eample. In 15th International Multidisciplinary Scientific Geoconference SGEM 2015, pages 391–398.
  • [6] Hastaoglu, K. O. (2016). Comparing the results of PSIn-SAR and GNSS on slow motion landslides, Koyulhisar, Turkey. Geomatics, natural hazards and risk, 7(2):786–803, doi:10.1080/19475705.2014.978822.
  • [7] Larson, K. M., Bodin, P., and Gomberg, J. (2003). Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science, 300(5624):1421–1424, doi:10.1126/science.1084531.
  • [8] Ma, H., Zhao, Q., Verhagen, S., Psychas, D., and Liu, X. (2020). Assessing the performance of Multi-GNSS PPP-RTK in the local area. Remote Sensing, 12(20):3343.
  • [9] Prochniewicz, D., Szpunar, R., and Walo, J. (2016). A new study of describing the reliability of GNSS Network RTK positioning with the use of quality indicators. Measurement Science and Technology, 28(1):015012.
  • [10] QZSS (2021). Quasi-Zenith Satellite System. https://qzss.go.jp/en/technical/satellites/index.html. Online; accessed on 7 March 2021.
  • [11] Sanjaya, M. D. A., Sunantyo, T. A., and Widjajanti, N. (2019). Geometric aspects evaluation of GNSS control network for deformation monitoring in the Jatigede Dam Region. International Journal of Remote Sensing and Earth Sciences (IJReSES), 15(2):167–176, doi:10.30536/j.ijreses.2018.v15.a2901.
  • [12] Siejka, Z. (2015). Multi-GNSS as a combination of GPS, GLONASS and BeiDou measurements carried out in real time. Artificial satellites, 50(4):217, doi:10.1515/arsa-2015-0017.
  • [13] Sokoła-Szewioła, V. and Siejka, Z. (2009). Accuracy of continuous monitoring of mining area vertical displacements using GPS technique [in Polish]. Przegląd Górniczy, 65(7–8):30–37.
  • [14] Song, W., Zhang, R., Yao, Y., Liu, Y., and Hu, Y. (2016). PPP sliding window algorithm and its application in deformation monitoring. Nature Scientific Reports, 6(1):1–6, doi:10.1038/srep26497.
  • [15] Stepniak, K., Baryla, R., Wielgosz, P., and Kurpinski, G. (2013). Optimal data processing strategy in precise GPS leveling networks. Acta Geodyn. Geomater, 10(4):443–452, doi:10.13168/AGG.2013.0044.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb3788f9-87f4-478f-a4ae-810398a13305
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.