PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New analytical technique to solve fractional-order Sharma-Tasso-Olver differential equation using Caputo and Atangana-Baleanu derivative operators

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work introduces a novel approach, the Adomian Decomposition Formable Transform Method (ADFTM), and its application to solve the fractional order Sharma-Tasso-Olver problem. The method’s distinctive outcomes are highlighted through a comparative analysis with established non-local Caputo fractional derivatives and the non-singular Atangana-Baleanu (ABC) fractional derivatives. To provide a comprehensive understanding, the proposed ADFTM’s approximate solution is compared with the homotopy perturbation method (HPM) and residual power series method (RPSM). Further, numerical and graphical results demonstrate the reliability and accuracy of the ADFTM approach. The novel outcomes presented in this work emphasize its capability to address complex engineering problems effectively. By demonstrating its efficacy in solving the fractional order problems, the new ADFTM proves to be a valuable tool in solving scientific problems.
Wydawca
Rocznik
Strony
1--16
Opis fizyczny
Bibliogr. 55 poz., wykr.
Twórcy
  • Department of Mathematical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, Anand-388421 Gujarat, India
  • Department of Mathematics, Marwadi University, Rajkot-360003, Gujarat, India
  • Department of Mathematics, Marwadi University, Rajkot-360003, Gujarat, India
  • Department of Mathematics, Marwadi University, Rajkot-360003, Gujarat, India
Bibliografia
  • [1] S. R. Aderyani, R. Saadati, J. Vahidi and J. F. Gómez-Aguilar, The exact solutions of conformable time-fractional modified nonlinear Schrödinger equation by first integral method and functional variable method, Opt. Quant. Electron. 54 (2022), no. 4, Paper No. 218.
  • [2] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl. 135 (1988), no. 2, 501-544.
  • [3] G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Math. Comput. Model. 13 (1990), no. 7, 17-43.
  • [4] H. Anac, A local fractional Elzaki transform decomposition method for the nonlinear system of local fractional partial differential equations, Fractal Fract 6 (2022), no. 3, Paper No. 167.
  • [5] A. A. M. Arafa, Analytical solutions for nonlinear fractional physical problems via natural homotopy perturbation method, Int. J. Appl. Comput. Math. 7 (2021), no. 5, Paper No. 179.
  • [6] I. K. Argyros, Convergence and Applications of Newton-Type Iterations, Springer, New York, 2008.
  • [7] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, preprint (2016), https://arxiv.org/abs/1602.03408.
  • [8] P. Bedi, A. Kumar and A. Khan, Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives, Chaos Solitons Fractals 150 (2021), Article ID 111153.
  • [9] M. Caputo, Linear models of dissipation whose q is almost frequency independent. II, Geophys. J. Int. 13 (1967), no. 5, 529-539.
  • [10] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 1 (2015), no. 2, 73-85.
  • [11] M. Caputo and M. Fabrizio, Applications of a new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl. 2 (2016), no. 1, 1-11.
  • [12] S. Cetinkaya, A. Demir and H. K. Sevindir, Solution of space-time-fractional problem by Shehu variational iteration method, Adv. Math. Phys. 2021 (2021), Article ID 5528928.
  • [13] A. C. Cevikel and E. Aksoy, Soliton solutions of nonlinear fractional differential equations with their applications in mathematical physics, Rev. Mexicana Fís. 67 (2021), no. 3, 422-428.
  • [14] A. N. Chatterjee, F. A. Basir, M. A. Almuqrin, J. Mondal and I. Khan, Sars-cov-2 infection with lytic and non-lytic immune responses: A fractional order optimal control theoretical study, Results Phys. 26 (2021), Article ID 104260.
  • [15] J. P. Chauhan and S. R. Khirsariya, A semi-analytic method to solve nonlinear differential equations with arbitrary order, Results Control Optim. 12 (2023), Article ID 100267.
  • [16] Ş. T. Demiray and U. Bayrakci, A study on the solutions of (1+ 1)-dimensional Mikhailov-Novikov-Wang equation, Math. Model. Numer. Simul. Appl. 3 (2022), no. 2, 101-110.
  • [17] A. Din, Y. Li, F. M. Khan, Z. U. Khan and P. Liu, On analysis of fractional order mathematical model of hepatitis b using Atangana-Baleanu Caputo (ABC) derivative, Fractals 30 (2022), Article ID 2240017.
  • [18] E. F. Donfack, J. P. Nguenang and L. Nana, On the soliton solutions for an intrinsic fractional discrete nonlinear electrical transmission line, Nonlinear Dyn. 104 (2021), no. 1, 691-704.
  • [19] N. P. Dong, H. V. Long and N. L. Giang, The fuzzy fractional SIQR model of computer virus propagation in wireless sensor network using Caputo Atangana-Baleanu derivatives, Fuzzy Sets and Systems 429 (2022), 28-59.
  • [20] H. Durur, A. Yokuş and M. Yavuz, Behavior analysis and asymptotic stability of the traveling wave solution of the Kaup-Kupershmidt equation for conformable derivative, Fract. Calc. New Appl. Underst. Nonlinear Phenom. 3 (2022), 162-185.
  • [21] O. G. Gaxiola, A. Biswas, M. Ekici and S. Khan, Highly dispersive optical solitons with quadratic-cubic law of refractive index by the variational iteration method, J. Optics 51 (2022), no. 1, 29-36.
  • [22] Y. Gülnur, M. Kayhan and A. Ciancio, A new analytical approach to the (1+ 1)-dimensional conformable Fisher equation, Math. Model. Numer. Simul. Appl. 2 (2022), no. 4, 211-220.
  • [23] Z. Hammouch, M. Yavuz and N. Özdemir, Numerical solutions and synchronization of a variable-order fractional chaotic system, Math. Model. Numer. Simul. Appl. 1 (2021), no. 1, 11-23.
  • [24] Y. He, S. Li and Y. Long, Exact solutions to the Sharma-Tasso-Olver equation by using improved G󸀠/G-expansion method, J. Appl. Math. 2013 (2013), Article ID 247234.
  • [25] F. Ismail, M. Qayyum, I. Ullah, S. I. A. Shah, M. M. Alam and A. Aziz, Fractional analysis of thin-film flow in the presence of thermal conductivity and variable viscosity, Waves Random Complex Media (2022), DOI 10.1080/17455030.2022.2063985.
  • [26] M. J. Khan, R. Nawaz, S. Farid and J. Iqbal, New iterative method for the solution of fractional damped burger and fractional Sharma-Tasso-Olver equations, Complexity 2018 (2018), Article ID 3249720.
  • [27] S. R. Khirsariya and S. B. Rao, On the semi-analytic technique to deal with nonlinear fractional differential equations, J. Appl. Math. Comput. Mech. 22 (2023), no. 1, 13-26.
  • [28] S. R. Khirsariya and S. B. Rao, Solution of fractional Sawada-Kotera-Ito equation using Caputo and Atangana-Baleanu derivatives, Math. Methods Appl. Sci. (2023), DOI 10.1002/mma.9438.
  • [29] S. R. Khirsariya, S. B. Rao and J. P. Chauhan, Semi-analytic solution of time-fractional Korteweg-de Vries equation using fractional residual power series method, Results Nonlinear Anal. 5 (2022), no. 3, 222-234.
  • [30] S. R. Khirsariya, S. B. Rao and J. P. Chauhan, A novel hybrid technique to obtain the solution of generalized fractional-order differential equations, Math. Comput. Simulation 205 (2023), 272-290.
  • [31] A. Kumar, S. Kumar and M. Singh, Residual power series method for fractional Sharma-Tasso-Olever equation, Commun. Numer. Anal. 10 (2016), no. 1, 1-10.
  • [32] K. S. Miller and B. Ross, Fractional Differential Equations: An Introduction to the Fractional Calculus, John Wiley & Sons, New York, 1993.
  • [33] M. Modanli and M. E. Koksal, Laplace transform collocation method for telegraph equations defined by Caputo derivative, Math. Model. Numer. Simul. Appl. 2 (2022), no. 3, 177-186.
  • [34] A. Ouzizi, F. Abdoun and L. Azrar, Nonlinear dynamics of beams on nonlinear fractional viscoelastic foundation subjected to moving load with variable speed, J. Sound Vibration 253 (2022), Article ID 116730.
  • [35] J.-T. Pan and W.-Z. Chen, A new auxiliary equation method and its application to the Sharma-Tasso-Olver model, Phys. Lett. A 373 (2009), no. 35, 3118-3121.
  • [36] R. K. Pandey and H. K. Mishra, The numerical solution of time fractional Kuramoto-Sivashinsky equations via homotopy analysis fractional Sumudu transform method, Math. Eng. Sci. Aerospace (MESA) 12 (2021), no. 3, 863-882.
  • [37] M. Partohaghighi and A. Akgül, Modelling and simulations of the seir and blood coagulation systems using Atangana-Baleanu-Caputo derivative, Chaos Solitons Fractals 150 (2021), Article ID 111135.
  • [38] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of Their Applications, Math. Sci. Eng. 198, Academic Press, San Diego, 1998.
  • [39] R. Z. Saadeh and B. F. Ghazal, A new approach on transforms: Formable integral transform and its applications, Axioms 10 (2021), no. 4, Paper No. 332.
  • [40] S. Sarwar, New rational solutions of fractional-order Sharma-Tasso-Olever equation with Atangana-Baleanu derivative arising in physical sciences, Results Phys. 19 (2020), Article ID 103621.
  • [41] I. Siddique, M. M. M. Jaradat, A. Zafar, K. B. Mehdi and M. S. Osman, Exact traveling wave solutions for two prolific conformable m-fractional differential equations via three diverse approaches, Results Phys. 28 (2021), Article ID 104557.
  • [42] J. E. Solís Pérez, J. F. Gómez-Aguilar, D. Baleanu and F. Tchier, Chaotic attractors with fractional conformable derivatives in the Liouville-Caputo sense and its dynamical behaviors, Entropy 20 (2018), no. 5, Paper No. 384.
  • [43] L. Song, Q. Wang and H. Zhang, Rational approximation solution of the fractional Sharma-Tasso-Olever equation, J. Comput. Appl. Math. 224 (2009), no. 1, 210-218.
  • [44] S. Sirisubtawee, S. Koonprasert and S. Sungnul, New exact solutions of the conformable space-time Sharma-Tasso-Olver equation using two reliable methods, Symmetry 12 (2020), no. 4, Paper No. 644.
  • [45] H. Tajadodi, Z. A. Khan, J. F. Gómez-Aguilar, A. Khan and H. Khan, Exact solutions of conformable fractional differential equations, Results Phys. 22 (2021), Article ID 103916.
  • [46] T. Q. Tang, Z. Shah, R. Jan, W. Deebani and M. Shutaywi, A robust study to conceptualize the interactions of cd4+ t-cells and human immunodeficiency virus via fractional calculus, Phys. Scripta 96 (2021), no. 12, Article ID 125231.
  • [47] P. Veeresha, M. Yavuz and C. Baishya, A computational approach for shallow water forced Korteweg-de Vries equation on critical flow over a hole with three fractional operators, Int. J. Optim. Control. Theor. Appl. IJOCTA 11 (2021), no. 3, 52-67.
  • [48] S. Wang, X. Y. Tang and S. Y. Lou, Soliton fission and fusion: Burgers equation and Sharma-Tasso-Olver equation, Chaos Solitons Fractals 21 (2004), no. 1, 231-239.
  • [49] A.-M. Wazwaz, New solitons and kinks solutions to the Sharma-Tasso-Olver equation, Appl. Math. Comput. 188 (2007), no. 2, 1205-1213.
  • [50] M. Yavuz, European option pricing models described by fractional operators with classical and generalized Mittag-Leffler kernels, Numer. Methods Partial Differential Equations 38 (2022), no. 3, 434-456.
  • [51] M. Yavuz and N. Sene, Fundamental calculus of the fractional derivative defined with Rabotnov exponential kernel and application to nonlinear dispersive wave model, J. Ocean Eng. Sci. 6 (2021), no. 2, 196-205.
  • [52] H. Yépez-Martínez, J. F. Gómez-Aguilar and A. Atangana, First integral method for non-linear differential equations with conformable derivative, Math. Model. Nat. Phenom. 13 (2018), no. 1, Paper No. 14.
  • [53] H. Yépez-Martínez, A. Pashrashid, J. F. Gómez-Aguilar, L. Akinyemi and H. Rezazadeh, The novel soliton solutions for the conformable perturbed nonlinear Schrödinger equation, Modern Phys. Lett. B 36 (2022), no. 8, Paper No. 2150597.
  • [54] E. M. E. Zayed, A note on the modified simple equation method applied to Sharma-Tasso-Olver equation, Appl. Math. Comput. 218 (2011), no. 7, 3962-3964.
  • [55] T. Zubair, M. Usman, I. Khan, M. A. Almuqrin, N. N. Hamadneh, A. Singh and T. Lu, Atangana-Baleanu Caputo fractional-order modeling of plasma particles with circular polarization of laser light: An extended version of Vlasov-Maxwell system, Alexandria Eng. J. 61 (2022), no. 11, 8641-8652.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb36e701-0ece-4069-a109-8d73aee24052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.