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Abstract

To obtain the mechanical energy of waves from arbitrary directions, the vibration absorbers of wave energy converters 
(WEC) are usually vertically axisymmetric. In such case, the wave-body interaction hydrodynamics is an essential 
research topic to obtain high-efficiency wave energy. In this paper, a semi-analytical method of decomposing the 
complex axisymmetric boundary into several ring-shaped stepped surfaces based upon the boundary approximation 
method (BAM) is introduced and examined. The hydrodynamic loads and parameters, such as the wave excitation 
forces, added mass and radiation damping of the vertical axisymmetric oscillating buoys, can then be achieved by 
using the new boundary discretisation method. The calculations of the wave forces and hydrodynamic coefficients show 
good convergence with the number of discretisation increases. Comparison between the constringent results and the 
results of the conventional method also verifies the feasibility of the method. Then, simulations and comparisons of the 
hydrodynamic forces, motions and wave power conversions of the buoys with series draught and displacement ratios in 
regular and irregular waves are conducted. The calculation results show that the geometrical shape has a great effect 
on the hydrodynamic and wave power conversion performance of the absorber. In regular waves, though the concave 
buoy has the lowest wave conversion efficiency, it has the largest frequency bandwidth for a given draught ratio, while 
in irregular waves, for a given draught ratio, the truncated cylindrical buoy has the best wave power conversion, and 
for a given displacement of the buoy, the concave buoy shows the best wave power conversion ability.
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introduction

Slow-speed ocean waves have now been proved to be 
a promising renewable resource that can promote the periodic 
vibration of the floating structure or the periodic compression 
and release of air, thus converting energy [1]. For this reason, 
and based on this principle, many wave energy converter 
(WEC) concepts have been developed for efficient and 
economic power absorption, such as the point absorber (PA), 
which utilises the heave mode of the oscillating buoy in waves. 
At the same time, the wave‒body interaction hydrodynamics, 
as well as the performance analysis of the power take-off 
(PTO) mechanism, have also been continuously studied 
to facilitate the design of equipment and achieve the best 
operation in the considered environment.

The influence of the geometry influence on hydrodynamic 
characteristics has been evaluated on traditional marine 
structures to minimise their motion and improve their 
sea-keeping ability [2]-[3]. In contrast, the same efforts 
have been made in the case of PAWECs in order to make 
the absorber oscillate harmoniously in random sea waves, 
allowing maximum motion amplitudes to absorb more wave 
power. Many works on improving the wave power conversion 
efficiency by optimising the geometrical shape or parameters 
of PAWECs have been conducted in view of the increasing 
interest in ocean renewable energy [4]-[6]. Mavrakos and 
Katsaounis [7] explored the effect of the floaters’ geometries 
on the power conversion performance of tightly moored 
vertical axisymmetric wave energy converters. The absorbers, 
considering a bottom-mounted vertical or horizontal skirt 
in the single-body and piston-like arranged WECs, were 
examined and comparatively assessed. They found that 
the conical absorber with a vertical skirt, considering the 
same displacement, has a better power conversion ability 
as the significant wave height increases. A surge‒pitch 
wave energy converter with bi-cubic B-spline surfaces of 
parametric description was examined by McCabe et al. [8]. 
The elementary cost function was used to determine the 
performance, and the optimal shape of the collector was 
obtained by using genetic algorithms. They found that the 
optimal collector shape with the best cost function value 
overall was asymmetrical, with a bulbous body and ‘wings’ 
that slope backwards from the bottom upwards. Similar 
research on shape optimisation using a genetic algorithm was 
also conducted later by McCabe [9], considering the constraint 
regimes defined by the displacement and power rating limits 
based on wave data from the North-East Atlantic Ocean. 
Zhang et al. [10] introduced a new hydrodynamic evaluation 
method for vertical axisymmetric absorbers and explored 
several cases for the optimisation of wave energy conversion. 
They found that, among absorbers with the same outer 
radius and draught, the cylindrical type shows an excellent 
wave energy conversion ability at certain given frequencies, 
while in random sea waves, the parabolic and conical ones 
have better stabilisation and applicability in wave power 
conversion. Shadman et al. [11] presented a methodology 
for the geometrical optimisation of wave energy converters 

based on statistical analysis methods and the hydrodynamics 
of the system in the frequency domain. They tested this 
method on an axisymmetric heaving point absorber for 
a nearshore region of the Rio de Janeiro coast and obtained 
the optimal geometrical configuration. Esmaeilzadeh and 
Alam [12] calculated the optimum shape for a submerged 
planar pressure differential wave energy converter through 
a systematic method based on high-performance computing 
and considering different kinds of incident waves. A new 
parametric description of the absorber shape with Fourier 
decomposition of geometrical shapes is introduced in their 
research. Very recently, Erselcan and Kükner [13] conducted 
a parametric optimisation study to find an optimal design for 
a heaving point absorber wave energy converter located off 
the Turkish coast of the Black Sea. The effects of the geometry, 
mass, and the dimensions of the floats and the parameters 
of the power take-off system are considered and evaluated.

The above series of optimisation studies are based upon 
the accurate simulation of the hydrodynamics of wave power 
harvesting structures. For those oscillating absorbers with 
a simple configuration, the traditional potential flow algorithm, 
dividing the encircled fluid domain into several subdomains, 
can be employed. In such case, the expressions of the velocity 
potentials, added mass, radiation damping and wave forcing 
can be analytically presented by using the eigenfunction 
expansion method as shown in Mavrakos et al. [14] and 
Bachynski et al. [15]. Thus, the hydrodynamic performance as 
affected by the geometrical parameters can be systematically 
described. However, for absorbers with a complex wetted 
surface, numerical calculation methods (boundary element 
method, finite element method, etc.) should be used. Based on 
these methods, many studies have been carried out to improve 
the wave power conversion performance of the device, though 
it needs large quantities of grid data and a huge number of 
calculations. For example, to optimise the absorber’s wave 
power conversion for a targeted location in the Atlantic off the 
west coast of Ireland, Goggins and Finnegan [16] introduced 
a methodology considering geometric configuration contrasts 
with massive hydrodynamic numerical calculations using 
ANSYS-AQWA. To systematically analyse the effects of the 
geometric constraints of an oscillating water column wave 
energy converter for power optimisation in irregular waves, 
Gomes et al. [17] calculated extensive hydrodynamic data 
using the BEM-based code WAMIT. Later, Koh et al. [18] 
conducted a multi-objective optimisation considering the 
constraints of PTO damping and the production cost of the 
required sheet plate volume. Because of the requirement 
for sufficient relevant hydrodynamic data corresponding to 
the power conversion of geometrical parameter selection, 
the commercial program ANSYS-AQWA was employed, 
which resulted in the establishment of a vast amount of grid 
data and models. Related float configuration optimisation 
research considering more complex structures and more 
advanced methods is still ongoing, such as by Garcia-Teruel 
et al. [19]-[20], Esmaeilzadeh et al. [21], Sergiienko et al. [22], 
Berenjkoob et al. [23], and Rodríguez et al. [24]. However, 
the researches on the influence of the PTO damping and 
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geometrical configurations on the power conversion of the 
harvesting buoy with heave motion are still not sufficiently 
thorough and comprehensive.

In this context, a semi-analytical solution, first put forward 
by Kokkinowrachos et al. [25] and explored further by Zhang 
et al. [10], was employed for the relatively fast and simple 
hydrodynamic calculation and systematic wave power 
conversion evaluation of a vertical axisymmetric absorber 
with heave motion. The lateral section shapes of the buoy 
were described by different power series equations, such as 
half for concave and one for conical. Having divided the fluid 
domain under the float into coaxial annular fluid domains, 
a general eigenfunction expansion matching method was then 

understandably employed. A convergence and accuracy test for 
the hydrodynamic calculation of a hemisphere was conducted 
by increasing the number of discretisations. Further, a set of 
hydrodynamic coefficients and wave excitation forces for the 
oscillating absorbers with continuous draught ratios were 
calculated conveniently. Then, the corresponding captured 
wave power in regular and irregular waves, considering the 
general and optimised PTO mechanical damping coefficients, 
was calculated. The effect of the geometrical configuration of 
the buoys on the wave power conversion was systematically 
analysed and evaluated, and can be referred to in future work 
to improve the wave energy conversion performance.

Table 1. Variables and their definitions

Variable Definition Variable Definition

ω Wave frequency (rad/s) A Wave amplitude (m)

Ö Velocity potential (m2/s) g Gravity acceleration (m/s2)

h Water depth (m) m Mass of the floater (kg)

k Wave number ρ  Water density (kg/m3)

3dF Wave force in heave (N) R  Radius of the floater (m)

33µ Added mass in heave (kg) d  Draught of the floater (m)

33λ Radiated damping in heave (Ns/m) t Straight wall height of the floater (m)

33k Hydrostatic restoring stiffness coefficient (N/m) η Wave energy conversion efficiency

3RAO Response amplitude operator in heave pc PTO damping coefficient (Ns/m)

3dF Non-dimensional wave force in heave P0 Incident wave power (W)

33µ  Non-dimensional added mass in heave Pa Average captured wave power (W)

33λ
 

Non-dimensional radiated damping in heave pω Peak frequency (rad/s)

( )S ω Wave spectral density SH Significant wave height (m)

Hydrodynamic formulations

The oscillating absorber considered in this study is shown 
in Fig. 1. We define the cylindrical coordinated system 
( , , )r zθ  by its origin located at the centre of the absorber 
and on the mean plane of the free surface. The axis oz is 
vertically upward. The wetted surface of the absorber is 
assumed to comprise a cylindrical surface and a vertical 
axisymmetric curved surface. The outer radius of the two 
surfaces is the same and denoted as R . The cylinder height, 
the whole draught and the water depth are denoted as t , d
and h , respectively, in which 0 t d≤ ≤ . For convenience, 
the variables and their definitions are displayed in Table 1. Fig. 1. Definition of fluid subdomains of boundary approximation method
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For incompressible and inviscid fluid, and for small 
amplitude wave theory with irrotational motion, we can 
introduce a velocity potential ( , , , ) Re[ ( , , ) ]i tr z t r z e ωΨ θ Φ θ −= to describe the fluid 
flow. Assuming harmonic motion in frequency domain, for 
the sake of simplicity, the time variation can be omitted and 
the velocity potential can be written as

( , , , ) Re[ ( , , ) ]i tr z t r z e ωΨ θ Φ θ −=  (1)

According to the line plane wave theory, the spatial 
velocity potential Φ can be decomposed as the undisturbed 
incident wave velocity potential Φ0 , scattered potential Φ7 
for a fixed body and radiation potential Φj(j = 1,3,5) induced 
by the body motion oscillation in otherwise calm water. The 
velocity potentials Φ0 and Φ7 comprise the diffracted potential 
ΦDaround the structure with constraints. Then, we have

HYDRODYNAMIC FORMULATIONS 
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where ( 1 6)j j - = is the j-th mode motion amplitude and only 3j = for heave is considered in this paper. The 
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where i is an imaginary unit and k is the wave number, which 
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In the unbounded fluid domain with finite water depth, the radiation velocity potential caused by the forced 
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The sets of unknown Fourier coefficients  are determined by taking advantage of orthogonality, in the 

so-called Garrett method, according to matching of the potentials and its normal derivative on the juncture 

boundaries surface shared by the subdomains. For the detailed matching procedure, the reader can refer to Zhang 

et al. [10]. Considering the heave motion applied in the wave energy conversion, the wave forcing and radiation 

damping coefficients in heave need to be obtained. Thus, by defining 0 0R = , the non-dimensional wave excitation 

forces and hydrodynamic coefficients of the absorber in heave can be calculated and defined by 
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WAVE ENERGY CONVERSION 

Having obtained the hydrodynamic parameters and wave-excited forces, the wave energy conversion ability 

of the buoys can be further investigated. The power take-off (PTO) mechanism assembled between the absorber 

and the solid platform or seabed is composed of a linear damper, which can be activated to output electric energy 

under the absorber’s heave reciprocating motion [26]. In such case, the motion of the buoy with the PTO 

mechanism in waves can be expressed as 
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WAVE ENERGY CONVERSION 

Having obtained the hydrodynamic parameters and wave-excited forces, the wave energy conversion ability 

of the buoys can be further investigated. The power take-off (PTO) mechanism assembled between the absorber 

and the solid platform or seabed is composed of a linear damper, which can be activated to output electric energy 

under the absorber’s heave reciprocating motion [26]. In such case, the motion of the buoy with the PTO 

mechanism in waves can be expressed as 
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The sets of unknown Fourier coefficients  are determined by taking advantage of orthogonality, in the 

so-called Garrett method, according to matching of the potentials and its normal derivative on the juncture 

boundaries surface shared by the subdomains. For the detailed matching procedure, the reader can refer to Zhang 

et al. [10]. Considering the heave motion applied in the wave energy conversion, the wave forcing and radiation 

damping coefficients in heave need to be obtained. Thus, by defining 0 0R = , the non-dimensional wave excitation 

forces and hydrodynamic coefficients of the absorber in heave can be calculated and defined by 
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WAVE ENERGY CONVERSION 

Having obtained the hydrodynamic parameters and wave-excited forces, the wave energy conversion ability 

of the buoys can be further investigated. The power take-off (PTO) mechanism assembled between the absorber 

and the solid platform or seabed is composed of a linear damper, which can be activated to output electric energy 

under the absorber’s heave reciprocating motion [26]. In such case, the motion of the buoy with the PTO 

mechanism in waves can be expressed as 
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motion of the buoy with the PTO mechanism in waves can 
be expressed as
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where pc denotes the damper’s damping coefficient, which 
can be regulated, 33k  is the hydrostatic restoring stiffness 
coefficient and is expressed as gSρ , with water density ρ , 
gravity acceleration  g and waterline area S. The variables z , z
, z and 3df contain the common time factor i te ω , which can be 
unified as  

where pc denotes the damper’s damping coefficient, which can be regulated, 33k  is the hydrostatic restoring 

stiffness coefficient and is expressed as gS , with water density  , gravity acceleration  g and waterline area S. 

The variables z , z , z and 3df contain the common time factor i te  , which can be unified as tΦe  −= . By 

separating the time factor from these variables into the frequency domain, the response amplitude operator (RAO) 

of the buoy in heave can be obtained and given as  
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In this paper, the wave-excited motion amplitude A here is unit, so the calculated RAO will also be the motion 
amplitude. According to Falnes [28], for an oscillating-buoy wave energy converter, the captured wave energy with 
a linear PTO mechanism can be defined as 
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Therefore, the optimal PTO damping coefficient can be obtained by solving the extreme value problem of the 
power expression about the damping coefficient. Then, we have the optimal expression of the damping coefficient: 
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To better understand the wave conversion ability of the buoy with different geometries, we define the capture 

width ratio   to describe the wave energy conversion efficiency, expressed as 
 0aP P =   (22) 

with the incident wave power defined as 
 0 0 0 0(4 ) (1 2 sinh2 )P gB A k k h k h =  +   (23) 

where B denotes the heave wave width of the buoy and is defined as twice the radius of the buoy in this paper. 0k

is the zero order wave number for a given wave frequency  . 

NUMERICAL RESULTS 

CONVERGENCE AND VERIFICATION 

The numerical work in this section is involved in the choice of the number of terms used in the infinite 

simulations. The former 30 terms of the unknown Fourier coefficients are adopted in the infinite summations to 

compute the numerical results because the infinite summations have excellent truncation characteristics, as 

depicted in Yeung [29]. A quintessential hemisphere with radius R=5m and draught 5md = in the water depth of 
50mh = with different incident wave frequencies is adopted here to verify the feasibility and validity of this 

semi-analytical solution.  

     

Fig. 2. Non-dimensional hydrodynamic calculation results with different incident wave frequencies for a hemisphere 
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To better understand the wave conversion ability of the 
buoy with different geometries, we define the capture width 
ratio η  to describe the wave energy conversion efficiency, 
expressed as

0aP Pη =  (22)

with the incident wave power defined as

0 0 0 0(4 ) (1 2 sinh 2 )P gB A k k h k hρ ω= ⋅ +  (23)

where B denotes the heave wave width of the buoy and is 
defined as twice the radius of the buoy in this paper. 0k is 
the zero order wave number for a given wave frequency ω .

Numerical results

Convergence and verification

The numerical work in this section is involved in the choice 
of the number of terms used in the infinite simulations. 
The former 30 terms of the unknown Fourier coefficients 
are adopted in the infinite summations to compute the 
numerical results because the infinite summations have 
excellent truncation characteristics, as depicted in Yeung [29]. 
A quintessential hemisphere with radius R=5m and draught 

5m in the water depth of 50mh = with different incident 
wave frequencies is adopted here to verify the feasibility and 
validity of this semi-analytical solution. 

Fig. 2. Non-dimensional hydrodynamic calculation results with different 
incident wave frequencies for a hemisphere

The examinations on the convergence of the wave forces 
and hydrodynamic coefficients of the above-mentioned 
hemisphere in the presence of regular waves of different 
frequencies in a water depth of 50mh = are shown in Fig. 2. 
It can be concluded that convergent results can be achieved 
when the number of discretization reaches 15. 

The analytical solution method based upon the multipole 
theory for a hemisphere has been developed by Hulme [30]. 
In such case, the correctness of the present semi-analytical 
method can be verified by calculating the hydrodynamic 
parameters of the above-mentioned absorber with these two 
methods. Comparisons of the wave excitation forces and 
hydrodynamic coefficients of the absorber in heave in Table 
2 show good agreement, which can be regarded as validation 
of the present method.

Tab. 2. Verification of the solution method
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3 ( )dF gARρ 0.9925 0.9895 0.3736 0.3745 0.1388 0.1367

3
33 ( )Rµ ρ 0.488 0.4903 0.2311 0.2297 0.0756 0.0763

3
33 ( )Rλ ρ ω 0.9058 0.9042 0.5676 0.5667 0.4668 0.4701

Maximum error (%) 0.47 0.61 1.54

Hydrodynamic performance

Based upon the above verified hydrodynamic calculation 
method, the hydrodynamic characteristics of the vertical 
axisymmetric absorbers can be analysed. In such case, four 
kinds of vertical axisymmetric absorbers are considered 
for evaluation of the influence of the geometry on the 
hydrodynamic characteristics and wave energy conversion 
performance. The complex wetted surface of the absorber 
comprises a vertical cylindrical surface and a vertical 
axisymmetric curved surface. The geometrical parameters 
and lateral views of the absorbers are shown in Fig. 3. They 
are concave, conical, parabolic and ellipsoidal surfaces, and 
we define them in turn as cases 1‒4, respectively. The curves 

in the semi-section lateral 
views in the dashed frames 
are described with curvilinear 
equations in their local 
coordinate systems as

2

2

Case 1 ( )
Case 2 ( )
Case 3 ( ) ( )

Case 4 ( ) 1 1 ( )

z d t x R
z d t x R
z d t x R

z d t x R

→ − =

→ − =

→ − =

→ − = − −

 (24)

in which 0 x R≤ ≤ , 0 t d≤ < , and, to describe the absorber’s 
geometrical characteristics more conveniently, we define the 
draught ratio ( )d t d−  as (0 1)r rd d≤ ≤ . When the draught 
ratio equals 0, the absorbers will be vertical truncated 
cylinders. In addition, the buoys are defined as concave, 
conical, paraboloid and ellipsoid buoys in turn.
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Fig. 3. Geometrical parameters description and semi-section lateral views of 
the considered absorbers

In this paper, we define the four types of buoys with the 
same outer radius 5R = m and draught 6d = m, in water 
with depth 50h = m, to estimate the hydrodynamic and wave 
power conversion performance impartially. The response 
amplitude operators of the buoys in heave motion with free 
vibration, considering consecutive incident wave frequencies 

and draught ratios, are given 
in Fig. 4. It can be clearly seen 
that the motion RAOs in heave 
for the chosen absorbers have 
nearly identical trends to the 
incident wave frequencies and 
draught ratios. For a  given 
draught ratio, there will be 
a  peak value of the RAO 
with the increase of wave 
frequencies. However, in the 

range of the draught ratios, the concave type buoy shows a 
relatively high-frequency bandwidth, and when the draught 
ratio reaches 0.8, the resonance characteristics are not so 
obvious. In such case, the motion characteristics, as well as 
their formation mechanism at higher draught ratios, take 
on added importance. For a better understanding, the heave 
RAO and hydrodynamic parameters are also described with 
the given draught ratio equal to 0.8 and 1.0 for the four kinds 
of buoys.

 Fig. 4. Heave RAOs of the absorbers with free vibration
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As shown in Fig. 5, the heave RAOs of the concave and 
conical buoys have no obvious peak characteristics, as well 
as corresponding wave-excited forces. With the increase of 
the draught ratio, the vertical component of the velocity 
potential gradient at the bottom of the float decreases, and 
the resulting heave excitation force also decreases. However, 

the radiated velocity potential comes from the forced motion 
of the buoys in quiescent water. The non-planar bottom caused 
by the draught ratio increases the external energy transfer of 
the radiation wave. Thus, the radiated wave forces increase 
along with the increase of the draught ratio. These two reasons 
cause the motion response of the buoys to slow down. 

Fig. 5. Motion RAOs, excited forces, added mass and radiated damping of the absorbers in heave with dr equal to 0.8 (left) and 1.0 (right)
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In addition, the motion response and hydrodynamic parameters 
of the floating buoys at their natural frequencies have also changed 
greatly. The natural frequencies of the buoys with different 
draught ratios are described in Table 3. Compared with the 
truncated cylinder, the natural frequencies of the four types 
of buoys are increased, and with the increase of the draught 
ratio, the range of increase is more obvious. In fact, this 
phenomenon can be explained by the wave excitation force 
and hydrodynamic parameters of the buoys at the natural 
frequency depicted in the following Fig. 6. 
Tab. 3 Natural frequencies of the absorbers with free vibration

Case No.
Draught ratio

0.0 0.2 0.4 0.6 0.8 1.0

1 1.06 1.15 1.25 1.40 1.59 1.62

2 1.06 1.14 1.24 1.36 1.51 1.61

3 1.06 1.13 1.21 1.30 1.41 1.50

4 1.06 1.12 1.17 1.23 1.29 1.35

Fig. 6. Added mass and radiated damping in heave at natural frequencies of 
the free vibration absorbers

Fig. 7. Heave RAOs and excited forces at natural frequencies of the free 
vibration absorbers  

  The natural frequencies of the free oscillating buoys are 
mainly decided by the generalised mass m , the stiffness 
coefficient k in heave and the damping coefficient c , which 
can be expressed as 2( 2 )n k m c mω = − . Since the four types 
of buoys have the same radius, the stiffness coefficient is 
the same. The depicted hydrodynamic parameters of the 
buoys with different draught ratios have little difference. 
The added mass of the conical and parabolic buoys even 
alternates. Therefore, the concave buoy with the minimum 
displacement has the maximum natural frequency. The 
motion response and wave-excited forces of the buoys at 
their natural frequencies are also given in Fig. 7. Both of 
them decrease with the increase of draught ratios. However, 
the motion response decreases rapidly and then flattens out, 
while the wave excitation force is the opposite, flattening out 
and then decreasing rapidly.
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Wave energy conversion in regular waves

This section deals with the wave energy conversion ability 
of the four kinds of absorbers considered, based on the formal 
hydrodynamic parameters obtained. As has been mentioned 
before, the shape geometries of the buoys are the main factors 
in exploring the wave conversion characteristics. We therefore 
explore their effects on the natural frequencies of the buoys, 
which are partly decided by the viscous damping. In addition, 
the wave energy conversion of the buoy shows the optimal 

ability at the resonance frequency referring to Zhang et al. 
[10]. As shown in Fig. 8, the wave energy conversion efficiency 
of the chosen buoys with different draught ratios and PTO 
damping coefficients at their natural frequencies is explored 
and presented. For a given draught ratio, there will be a peak 
value of the capture width ratio with the increasing PTO 
damping coefficients. However, the increase of the draught 
ratios makes the peak value most outstanding for the 
ellipsoidal buoy. 

Fig. 8. Capture width ratios of the damped vibration absorbers at resonance frequencies

Of all the shapes and draught ratios, the truncated cylinder 
seems to have the best wave conversion ability though it 
may also have the narrowest frequency bandwidth. In such 
case, the wave energy conversion efficiency only reflects 
these absorbers’ potential to convert waves at the resonance 
frequency. The conversion abilities in the whole incident 
wave frequency range, as well as the bandwidths of the buoys, 

need to be explored. For the convenience of research and 
description, we assume that the PTO mechanisms in this 
paper are adjustable and that the optimal state can be realised. 
Thus, the motion responses and wave capture efficiencies of 
the buoys with any given incident wave frequencies can be 
easily obtained and are depicted in the following Fig. 9.
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Fig. 9. Heave RAOs and capture width ratios of the damped vibration absorbers with optimal PTO damping coefficients

As shown in Fig. 9, the trend consistency between the 
motion response and wave power capture means that both the 
heave RAO and the capture width ratios for the considered 
shape geometries reach the optimal results at the natural 
frequencies. The increased draught ratios of the buoys not 
only decrease the optimal motion response and capture width 

ratio, but also increase the natural frequencies of the buoys. 
Though the truncated cylinder shows the best wave energy 
capture capability at natural frequency, its disadvantage in 
frequency bandwidth is also exposed. Here, the frequency 
bandwidth bfω is defined as the frequency range where the 
capture width ratios are more than half of the peak value.

Fig. 10. Natural frequencies and frequency bandwidths of the damped vibration absorbers with optimal PTO damping coefficients

Fig. 11. Optimal PTO damping coefficients and capture width ratios of the damped vibration absorbers at natural frequencies
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The natural frequencies and frequency bandwidth of the 
buoys with optimal PTO damping coefficients are shown in 
Fig. 10. It can be clearly observed that the increased draught 
ratio can increase the natural frequency effectively for a given 
shape of buoy. This conclusion can effectively improve the 
applicability of a buoy or beacon light to different sea areas. 
In addition, the concave buoy has the maximal natural 
frequency for a given draught ratio because of its decreased 
displacement. Though the concave buoy has the lowest wave 
conversion efficiency, it has the largest frequency bandwidth 
for a given draught, especially when the draught ratio is close 
to one. It is noteworthy that the natural frequencies and 
bandwidth are almost linear to the draught ratio, which is 
also presented in the optimal PTO damping coefficients and 
capture width ratios of the ellipsoidal buoy shown in Fig. 11. 
Special attention should also be given to the PTO mechanism, 
that the optimal damping coefficients and the relative 
optimal wave conversion efficiencies represent an obvious 
inverse correlation. In addition, a similar phenomenon also 
occurs between the frequency bandwidth and wave energy 
conversion efficiency. 

To further explore the effect of the geometry and shape on 
the wave power conversion ability and eliminate the influence 
of the drainage volume difference at the same time, buoys with 
the same displacement are considered and the ellipsoidal buoy 
with a draught ratio equal to 1 is regarded as the reference 
criterion for displacement. In such case, the draught ratios 
of the concave, conical and parabolic buoys will be 0.417, 0.5 
and 0.667, respectively. The calculation results of the buoys 
with the same displacement are given in Table 4. It can be 
observed that the natural frequencies of the forced vibrated 
buoys with optimal PTO damping coefficients have only 
a small difference. It should be stressed that, for the given 
four kinds of absorber, there is a perfect inverse correlation 
between the frequency bandwidth and the capture width 
ratios. This means that, though the shapes of the buoys are 
different, when their radius, draught and displacement are 
identical, the adaptabilities of their wave transformation have 
similar advantages. Certainly, this conclusion comes from 
the adjustability assumption of the optimal PTO damping 
coefficients for any given wave frequency. To further evaluate 
their wave conversion abilities, the irregular wave condition 
should be considered.
Tab. 4. Resonance and wave energy conversion characteristics of the buoys 
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1 0.417 1.258 0.36 5.960 12.413

2 0.500 1.286 0.40 6.587 11.196

3 0.667 1.328 0.45 7.575 9.702

4 1.000 1.339 0.48 8.211 8.786

Wave energy conversion in irregular waves

The above overall numerical results come from the 
assumption that the PTO damping can be adjusted to the 
optimal condition for a given incident wave frequency. 
However, in the real sea environment, a wave farm is complex 
and the frequencies are not isolated. In such case, the wave 
energy conversion abilities of buoys with manifold geometries 
and shapes should be further explored and evaluated. In this 
work, the JONSWAP spectrum [31] is selected to describe the 
incident wave spectrum and defined as
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where pω and sH are the peak frequency and significant 
wave height, respectively. The peak elevation parameter γ  
is constant and typically given as 3.3 [26], whereas ω  is the 
general incident wave frequency. As the axial-symmetric 
floater is not sensitive to the wave direction, the directional 
spectrum is not introduced here. According to the above wave 
absorption function , the converted wave power for the buoy 
in irregular waves can be obtained and expressed as

22

0
( ) ( )am pP c RAO S dω ω ω ω

+∞
= ∫  (27)

Similarly, the inserted wave power for irregular waves can 
also be obtained according to function  and given as

0 0
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ω ω
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=

= ⋅ +
∫  (28)

Then, the capture width ratio mη  of the buoy in irregular 
waves can be given as

m am mP P  (29)

In such case, the optimal PTO damping and corresponding 
optimal capture width ratios can also be obtained by setting 
the partial derivative of the capture width ratio to the damping 
as zero. However, the motion RAOs of the buoys are also the 
implicit equations about the PTO damping coefficients. In 
such case, in this paper, the golden section search method 
[27] is employed to search for the optimal PTO damping 
coefficients for given peak frequencies and draught ratios.
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Fig. 12. Optimal PTO damping coefficients of the damped vibration absorbers at given peak frequencies ωp 
and draught ratio Dr

The optimal PTO damping coefficients (100 kNs/m) for 
various peak frequencies and draught ratios are shown in Fig. 
12. The display area of the optimal PTO damping coefficients 
is divided into two parts by the minimum values for the given 
draught ratios and peak frequencies. In the upper part, the 
optimal PTO damping coefficients increase with the increased 
peak frequencies and decreased draught ratios, while in the 
lower part, the coefficients show the opposite trend. From the 
former section in regular waves, we know that the change 
characteristics of the PTO damping coefficients can reflect 
the changing trend of energy capture to a certain extent. 
In such case, in real wave power conversion, the installed 
capacity of the device should be considered, combining 
the PTO mechanism and power capture. Because the PTO 
damping forces are limited by the hydraulic capacity or the 
resistive load, in this case, when the optimal PTO damping 
coefficients are obtained, the damping mechanism can be 
easily designed. The wave power capture of the buoys with 
optimal PTO damping coefficients in irregular wave is 

further explored and shown in Fig. 13. Similarly, for a given 
draught ratio, the capture width ratio first increases and 
then decreases with the increasing peak frequencies. And 
without considering the viscous resistance of the sea water, 
the truncated cylinder shows the highest wave conversion 
efficiency at a peak frequency equal to 1.07 rad/s. This means 
that, for a given working area, when the wave statistics are 
relatively stable and the matched wave spectrum is confirmed, 
the truncated cylindrical wave power absorber can be optimal, 
such as the 1.07 rad/s peak frequency in this paper. However, 
when the wave spectrum and its parameters are not stable 
and confirmed, the conical absorber may be the best choice 
for wave power conversion. For a better understanding of 
the effect of the geometry on the power conversion ability, 
buoys with the same displacement ratio are further explored. 
The displacement ratio here means the ratio of the absorber’s 
displacement to that of the truncated cylinder with the same 
radius and draught.
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Fig. 13. Optimal capture width ratios of the damped vibration absorbers at given peak frequencies ωpand draught ratio Dr

As shown in Fig.14, the optimal capture width ratios of 
the buoys with peak frequencies and displacement ratios are 
calculated and depicted, respectively. For different buoys 
with the same given displacements, the optimal capture 
width ratios both increase first and then decrease with the 
peak frequencies. However, before the capture width ratio 
reaches the peak value, the buoys with the same largest 
displacement have a better wave power conversion ability, 
and the concave buoy shows the best performance on the 
wave absorption. In addition, for the given shaped buoy with 
different displacements, the larger the displacement is, the 
better the power conversion will be. Taking the concave buoy 
as an example, when the peak frequency is 1.0 rad/s, the 
capture width ratio decreases from 28.1 when rV is 0.9 to 
12.7 when rV is 0.7. The peak value also decreases from 37.4 
to 22.1. However, it is worth noting that the relative peak 
frequency where the peak value occurs increases from 1.09 
rad/s to 1.24 rad/s. 

The buoys with different shapes and the same displacement 
also show interesting characteristics that the peak frequencies 
where the peak values occur increase in turn from the concave 
to the ellipsoidal buoy, and the smaller the displacement 

ratio, the more obvious the increase. In addition, for a given 
displacement, when the peak frequency reaches a certain 
value, the buoys with different shapes start to converge and 
show the same wave conversion ability. We call this particular 
peak frequency the assimilation frequency aω . It decreases 
with the increased displacement ratio. This means that, for 
a given working sea area, when the statistical wave is sure, we 
can choose the optimal buoy and the displacement to obtain 
the best wave absorption.

Fig. 14. Optimal capture width ratios of the damped vibration absorbers with 
peak frequencies ωpat given displacement ratioVr
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Discussion and Conclusions

Four types of absorbers with different draught and 
displacement ratios are examined to analyse the effect of 
their geometries on the wave energy conversion ability, in 
which a semi-analytical method of decomposing the vertical 
axisymmetric curved surface into several ring-shaped 
stepped surfaces is introduced and examined. Combined 
with the updated body boundary characteristic, using the 
eigenfunction expansion matching method, the expressions 
of velocity potential in each domain, the added mass, 
radiation damping coefficients and wave-exciting forces of 
the oscillating buoy were obtained. The calculation results 
show that:

(1) The semi-analytical method by which the vertical 
axisymmetric curved surface is decomposed into several 
ring-shaped stepped surfaces can calculate accurately and 
investigate systematically the effect of the geometries on the 
hydrodynamic characteristics.

(2) In regular waves, the ellipsoidal buoy shows better 
wave energy conversion performance when the draught 
ratio reaches a relatively high value. In addition, its natural 
frequencies and bandwidth are almost linear to the draught 
ratio, as well as the optimal PTO damping coefficients and 
capture width ratios. When the draught ratios of all the four 
shaped buoys increase, their optimal motion responses, 
capture width ratios and natural frequencies also increase. 
Though the truncated cylinder shows the best wave energy 
capture capability at natural frequency, its disadvantage in 
frequency bandwidth is also exposed. The concave buoy has 
the maximal natural frequency for a given draught ratio 
because of its decreased displacement. In addition, though 
it has the lowest wave conversion efficiency, it has the largest 
frequency bandwidth for a given draught, especially when 
the draught ratio is close to one.

(3) In irregular waves, for a given draught ratio, the capture 
width ratios of all the considered shaped buoys first increase 
and then decrease with the increasing peak frequencies. 
Without considering the viscous resistance of the sea water, 
for a given working area, when the wave statistics are relatively 
stable and the matched wave spectrum is confirmed, the 
truncated cylindrical wave power absorber can be optimal. 
However, when the wave spectrum and its parameters are 
not stable and confirmed, the conical absorber may be the 
best choice for the wave power conversion.

(4) In irregular waves, when the displacements of the buoys 
are the same, the optimal capture width ratios both increase 
first and then decrease with the peak frequencies. However, 
before the capture width ratio reaches the peak value, the 
buoys with the same largest displacement have better wave 
power conversion ability and the concave buoy shows the best 
performance on the wave absorption. In addition, the peak 
frequencies where the peak values occur increase in turn 
from the concave to the ellipsoidal buoy, and the smaller the 
displacement ratio, the more obvious the increase.

(5) In irregular waves, for a given displacement, when 
the peak frequency reaches a certain value, the buoys with 

different shapes start to converge and show the same wave 
conversion ability. The assimilation frequency aω decreases 
with the increased displacement ratio, which means that, for 
a given working sea area, when the statistical wave is sure, we 
can choose the optimal buoy and the displacement to obtain 
the best wave absorption.
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