Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Rumen accumulation in slaughterhouses produced by sheep is a significant issue that endangers human life and the ecosystem. Use of rumen appears to improve biogas production due to a high rate of hydrolytic bacteria. Hydrolytic bacteria are required for the breakdown of organic matter and biogas. This study proposes that combined camel and sheep manure with tomatoes and Rumen be co-digested under mesophilic conditions by anaerobically fermenting in a batch system to produce biogas. In the cross-sectional area of the study at the same operating conditions, biogas volume was measured for a period of 14 days, and on the last day, methane concentrations were measured. The study found that the rumen sample had the highest methane concentration, measuring 69.30%. Conversely, the control mixture without any additional co-substance had the lowest percentage of methane. Additionally, the tomato sample showed a slightly higher methane concentration of 0.1% compared to the control mixture. The study results show that efficient biogas production increased with rumen and tomatoes addition to manure compared to the control bio-digester sample. This demonstrates how waste can be transformed into wealth, which can be used to reduce costs for the community.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
54--61
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- College of Science, Department of Physics, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
autor
- Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
autor
- College of Science, Department of Physics, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
Bibliografia
- 1. Alrowais, R., Abdel daiem, M.M., Hatata, A., Alotaibi, A., Essa, M.A., Said, N. 2023. Comparing the effect of mesophilic and thermophilic anaerobic co-digestion for sustainable biogas production: An experimental and recurrent neural network model study. Journal of Cleaner Production, 136248. https://doi.org/10.1016/J.JCLEPRO.2023.136248
- 2. Budiyono, B., Widiasa, I.N., Johari, S., Sunarso, S. 2014. Increasing Biogas Production Rate from Cattle Manure Using Rumen Fluid as Inoculums. International Journal of Science and Engineering, 6(1). https://doi.org/10.12777/ijse.6.1.31-38
- 3. Charles, W., Walker, L., Cord-Ruwisch, R. 2009. Effect of pre-aeration and inoculum on the start- up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresource Technology, 100(8), 2329–2335. https://doi.org/10.1016/J.BIORTECH.2008.11.051
- 4. Dinuccio, E., Balsari, P., Gioelli, F., Menardo, S. 2010. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresource Technology, 101(10), 3780–3783. https://doi.org/10.1016/J.BIORTECH.2009.12.113
- 5. Ekstrand, E.-M. 2019. Anaerobic digestion in the kraft pulp and paper industry : Challenges and possibilities for implementation (Vol. 769). Linköping University Electronic Press. https://doi.org/10.3384/diss.diva-156667
- 6. Embuldeniya, P., Rathnasiri, P.G., Rathnasiri, P., Pabasara Embuldeniya, Siriweera, B., Samarasiri, K. 2017. Analysis of Bio Methane production from food waste as a long term renewable energy option, 978–955. https://www.researchgate.net/publication/319701765
- 7. Emetere, M.E., Chikwendu, L., Afolalu, S.A. 2022. Improved Biogas Production from Human Excreta Using Chicken Feather Powder: A Sustainable Option to Eradicating Poverty. Global Challenges. https://doi.org/10.1002/gch2.202100117
- 8. Gebrezgabher, S.A., Meuwissen, M.P.M., Prins, B.A.M., Lansink, A.G.J.M.O. 2010. Economic analysis of anaerobic digestion-A case of Green power biogas plant in the Netherlands. NJAS - Wageningen Journal of Life Sciences, 57(2), 109–115. https://doi.org/10.1016/j.njas.2009.07.006
- 9. Ismail, Z., Abd Rahman, A., Muthaiyah, G., Nasruddin, M., Shokor, S., Rasli, M., Muslim, N., Rajadurai, J. 2018. Biogas Map as a Renewable Energy Resource. An International Journal, 10(3), 1198–1205.
- 10. Kelly Orhorhoro, E. 2017. Experimental Determination of Effect of Total Solid (TS) and Volatile Solid (VS) on Biogas Yield. American Journal of Modern Energy, 3(6), 131. https://doi.org/10.11648/j.ajme.20170306.13
- 11. Liu, X., Yang, J., Ye, T., Han, Z. 2018. Establishment of analysis method for methane detection by gas chromatography. IOP Conference Series: Earth and Environmental Science, 113(1). https://doi.org/10.1088/1755-1315/113/1/012023
- 12. Meyer, G., Okudoh, V., van Rensburg, E. 2022. A rumen based anaerobic digestion approach for lignocellulosic biomass using barley straw as feedstock. South African Journal of Chemical Engineering, 41, 98–104. https://doi.org/10.1016/j.sajce.2022.05.005
- 13. Nsair, A., Cinar, S.O., Alassali, A., Qdais, H.A., Kuchta, K. 2020. Operational Parameters of Biogas Plants: A Review and Evaluation Study. Energies, 13(15). https://doi.org/10.3390/en13153761
- 14. Rathod, V., Vallabhbhai, S., Rathod, V.P., Bhale, P.V, Mehta, R.S., Harmani, K., Bilimoria, S., Mahida, A., Champaneri, H. 2015. Biogas Production from Water Hyacinth in the Batch type Anaerobic Digester. www.sciencedirect.comwww.materialstoday.com/proceedings2214-7853
- 15. Sagagi, B.S., Garba, B., Usman, N.S. 2009. Studies on biogas production from fruits and vegetable waste. Bayero Journal of Pure and Applied Sciences, 2(1), 115–118.
- 16. Saghouri, M., Mansoori, Y., Rohani, A., Khodaparast, M.H.H., Sheikhdavoodi, M.J. 2018. Modelling and evaluation of anaerobic digestion process of tomato processing wastes for biogas generation. Journal of Material Cycles and Waste Management, 20(1), 561–567. https://doi.org/10.1007/s10163-017-0622-4
- 17. Samer, M. 2012. Biogas Plant Constructions. www.intechopen.com
- 18. Shokri, S. 2011. Biogas Technology, Applications, Perspectives and Implications. International Journal of Agricultural Science and Research, 2(3). www.SID.ir
- 19. Simeonov, I., Koumanova, B. 2009. Anaerobic co-digestion of wasted tomatoes and cattle dung for biogas production. https://www.researchgate.net/publication/264995447
- 20. Szilágyi, Á., Bodor, A., Tolvai, N., Kovács, K.L., Bodai, L., Wirth, R., Bagi, Z., Szepesi, Á., Markó, V., Kakuk, B., Bounedjoum, N., Rákhely, G. 2021. A comparative analysis of biogas production from tomato bio-waste in mesophilic batch and continuous anaerobic digestion systems. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0248654
- 21. Wang, K., Yin, J., Shen, D., Li, N. 2014. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresource Technology, 161, 395–401. https://doi.org/10.1016/J.BIORTECH.2014.03.088
- 22. Zhou, J., Zhang, R., Liu, F., Yong, X., Wu, X., Zheng, T., Jiang, M., Jia, H. 2016. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresource Technology, 217, 44–49. https://doi.org/10.1016/J.BIORTECH.2016.02.077
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb3033db-6bd3-4bd0-8b4d-b0ca1447e602