PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Suitable sites identifcation for potential rainwater harvesting (PRWH) using a multi criteria decision support system (MCDSS)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The world today faces water scarcity issues, especially in developing countries. This situation is further aggravated under arid and semiarid climates with the water demand increasing and limited rainfall events. The study was conducted in the Riyadh metropolitan area of Saudi Arabia. The study area has a hot arid desert climate. Therefore, there is an urgent need for harvesting rainwater to confront the increasing water demand. This research aims to identify the potential rainwater harvesting (PRWH) suitable sites based on the multi-criteria decision support system by the spatial analytic hierarchy process, with the aid of the integration of geographic information systems and remote sensing techniques. Mapping PRWH was carried out using the thematic layers of the slope, soil texture, land use and land cover (LULC), precipitation, and potential runoff coefficient (PRC). The study findings revealed that Riyadh has four hydrologic soil groups (HSGs), namely A, B, C, and D groups, and the percentage area is 2%, 26%, 3%, and 71%, respectively. The slope classes are fat (8–15%), moderately steep (>15–30%), and mountainous (>30%). The LULC layers are barren lands, agricultural lands, urban, and roads. The precipitation has been distributed into five classes namely very low (5.9%), low (10.1%), medium (13.2%), high (13.5%), and very high (57.3%) of the total investigated area. The PRC values were distributed in five levels namely very low (0.3–0.5), high (>0.5–0.7), and very high (>0.7–1), where about 83% of the capital faces high and very high PRC values. The percentage area of PRWH suitability sites is unsuitable (0.4%), poor (0.8%), moderate (13.3%), good (47.5%), and excellent (38%) of the total entire area. More than 85% of Riyadh has good and excellent suitability for PRWH. This study is tantamount to a powerful tool for identifying the PRWH suitability sites in arid and semiarid regions to confront the water demand increase.
Słowa kluczowe
Czasopismo
Rocznik
Strony
449--468
Opis fizyczny
Bibliogr. 59 poz.
Twórcy
autor
  • Alamoudi Water Research Chair, King Saud University, Riyadh, Saudi Arabia
  • Alamoudi Water Research Chair, King Saud University, Riyadh, Saudi Arabia
  • Agricultural Engineering Department, King Saud University, Riyadh, Saudi Arabia
Bibliografia
  • 1. Adham A, Wesseling JG, Abed R, Riksen M, Ouessar M, Ritsema CJ (2019) Assessing the impact of climate change on rainwater harvesting in the Oum Zessar watershed in Southeastern Tunisia. Agricult Water Manag 221:131–140. https://doi.org/10.1016/j.agwat.2019.05.006
  • 2. Al-Ghobari H, Dewidar AZ (2021) Integrating GIS-based MCDA techniques and the SCS-CN method for identifying potential zones for rainwater harvesting in a semi-arid area. Water 13(5):704
  • 3. Almazroui M (2019) Assessment of meteorological droughts over Saudi Arabia using surface rainfall observations during the period 1978–2017. Arab J Geosci 12(22):1–16
  • 4. Asif A, Dawood M, Jan B, Khurshid J, DeMaria M (2020) PHURIE: hurricane intensity estimation from infrared satellite imagery using machine learning. Neural Comput Appl 32(9):4821–4834
  • 5. Badhrudeen M, Naranjo N, Movahedi A, Derrible S (2020) Machine learning based tool for identifying errors in CAD to GIS converted data. In: CIGOS 2019, Innovation for Sustainable Infrastructure. Springer, pp 1185–1190
  • 6. Balkhair KS, Ur Rahman K (2021) Development and assessment of rainwater harvesting suitability map using analytical hierarchy process. GIS RS Tech Geocarto Int 36(4):421–448
  • 7. Boretti A, Rosa L (2019) Reassessing the projections of the world water development report. NPJ Clean Water 2(1):1–6
  • 8. Buraihi FH, Shariff ARM (2015) Selection of rainwater harvesting sites by using remote sensing and GIS techniques: a case study of Kirkuk, Iraq. J Teknol 76(15)
  • 9. Cao B-Y, Ma S-Q, Cao H-h (2014) Ecosystem assessment and fuzzy systems management. Springer, China
  • 10. Demessie D (2007) Assessment of Flood Risk in Dire Dawa Town, Eastern Ethiopia, Using GIS. MSc Thesis, Addis Ababa University
  • 11. Elsaid K, Kamil M, Sayed ET, Abdelkareem MA, Wilberforce T, Olabi A (2020) Environmental impact of desalination technologies: a review. Sci Total Environ 748:141528
  • 12. ESRI (2015) What is Gis? http://www.esri.com/what-is-gis. Accessed 10 November 2015
  • 13. Fagence M (2014) Citizen participation in planning, vol 19. Elsevier
  • 14. FAO (2006) World reference base for soil resources, 2006: a framework for international classification, correlation, and communication, vol 103. Food and Agriculture Organization of the United Nations, Rome
  • 15. Fawad M, Ullah F, Irshad M, Shah W, Mahmood Q, Ahmad I (2022) Marble waste site suitability assessment using the GIS-based AHP model. Environ Sci Pollut Res 29(19):28386–28401
  • 16. Gadamsetty S, Ch R, Ch A, Iwendi C, Gadekallu TR (2022) Hash-based deep learning approach for remote sensing satellite imagery detection. Water 14(5):707
  • 17. Gandhidasan P, Abualhamayel H (2012) Exploring fog water harvesting potential and quality in the Asir Region, Kingdom of Saudi Arabia. Pure Appl Geophys 169(5–6):1019–1036
  • 18. Gholamalifard M, Ahmadi B, Saber A, Mazloomi S, Kutser T (2022) Deploying a GIS-based multi-criteria evaluation (mce) decision rule for site selection of desalination plants. Water 14(10):1669
  • 19. Gunasekera K, Hunter J, Canto M, Weeks S (2015) Accelerating Satellite Image Processing through Cloud Computing. InProceedings of the International Conference on Computer Technology and Information Systems 2015 (pp. 2-7)
  • 20. Habeeb NJ, Weli ST (2021) Combination of GIS with different technologies for water quality: an overview. HighTech Innov J 2(3):262–272
  • 21. Hashemian F (2022) Assessment of a spatial multi-criteria evaluation method to locate suitable industrial Zones in Ardabil, Iran. Anthropog Pollut J 6(1):21–25
  • 22. Hashim HQ, Sayl KN (2021) Detection of suitable sites for rainwater harvesting planning in an arid region using geographic information system. Appl Geomat 13(2):235–248
  • 23. Hawkins RH, Hjelmfelt AT Jr, Zevenbergen AW (1985) Runoff probability, storm depth, and curve numbers. J Irrig Drain Eng 111(4):330–340
  • 24. Heilbronner R, Barrett S (2014) Digital image processing. In: Heilbronner R, Barrett S (eds) Image Analysis in Earth Sciences. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 31–57. https://doi.org/10.1007/978-3-642-10343-8_3
  • 25. Islam MR, Ahmad MR, Alam MN, Marma MS, Gafur A (2020) Micro-watershed delineation and potential site selection for runoff water harvesting using remote sensing and GIS in a Hilly Area of Bangladesh. Am J Water Resour 8(3):134–144
  • 26. Jafari M, Gholami A, Khalighi Sigaroudi S, Alizadeh Shabani A, Arzani H (2018) Site selection for rainwater harvesting for wildlife using multi-criteria evaluation (MCE) technique and Gis in the Kavir national park, Iran. J Rangeland Sci 8(1):77–92
  • 27. Jourgholami M, Karami S, Tavankar F, Lo Monaco A, Picchio R (2020) Effects of slope gradient on runoff and sediment yield on machine-induced compacted soil in temperate forests. Forests 12(1):49
  • 28. Li C, Liu M, Hu Y, Shi T, Zong M, Walter MT (2018) Assessing the impact of urbanization on direct runoff using improved composite CN method in a large urban area. Int J Environ Res Public Health 15(4):775
  • 29. Li C, Liu M, Hu Y, Zong M, Zhao M, Todd Walter M (2019) Characteristics of impervious surface and its effect on direct runoff: a case study in a rapidly urbanized area. Water Supply 19(7):1885–1891
  • 30. Liping C, Yujun S, Saeed S (2018) Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle. China PLoS ONE 13(7):e0200493
  • 31. Lopez G, Del Rosario O, MdlA JA, Alvarez H (2022) Site selection for ocean thermal energy conversion plants (OTEC): a case study in panama. Energies 15(9):3077
  • 32. Mahmood K, Qaiser A, Farooq S (2020) RS-and GIS-based modeling for optimum site selection in rain water harvesting system: an SCS-CN approach. Acta Geophys 68(4):1175–1185
  • 33. Mallick J, Talukdar S, Almesfer MK, Alsubih M, Ahmed M, Islam ARM (2022) Identification of rainfall homogenous regions in Saudi Arabia for experimenting and improving trend detection techniques. Environ Sci Pollut Res 29(17):25112–25137
  • 34. Mohammed H, Majid Z, Yamusa Y, Ariff M, Idris K, Darwin N (2019) Sanitary landfill siting using GIS and AHP. Eng, Technol Appl Sci Res 9(3):4100–4104
  • 35. Mokarram M, Mokarram MJ, Khosravi MR, Saber A, Rahideh A (2020) Determination of the optimal location for constructing solar photovoltaic farms based on multi-criteria decision system and Dempster-Shafer theory. Sci Rep 10(1):1–17
  • 36. Morbidelli R, Saltalippi C, Flammini A, Govindaraju RS (2018) Role of slope on infiltration: a review. J Hydrol 557:878–886
  • 37. Murray AT, Xu J, Wang Z, Church RL (2019) Commercial GIS location analytics: capabilities and performance. Int J Geogr Inf Sci 33(5):1106–1130
  • 38. Nigussie M, Tanner D, Twumasi-Afriyie S (2002) Enhancing the contribution of maize to food security in Ethiopia: In: Proceedings of the Second National Maize Workshop of Ethiopia: 12–16, Addis Ababa, Ethiopia. CIMMYT, November 2001
  • 39. NRCS (2009) National engineering handbook: Part 630—Hydrology, USDA Soil Conservation Service. Washington, DC, USA, Available online at https://directives.sc.egov.usda.gov/viewerFS.aspx?hid=21422
  • 40. Nuthammachot N, Stratoulias D (2021) A GIS-and AHP-based approach to map fire risk: a case study of Kuan Kreng peat swamp forest. Thailand Geocarto Int 36(2):212–225
  • 41. Olmstead SM (2020) The economics of managing scarce water resources. Rev Environ Econ Policy 4(1):179–198
  • 42. Petcu D, Gorgan D, Pop F, Tudor D, Zaharie D (2014) Satellite image processing on a grid-based platform. Int J Comput 7(2):51–58
  • 43. Radwan F, Alazba A (2021) Integrated hydrologic study of the arid and semi-arid regions using RST and GIS in the Riyadh metropolitan area. Saudi Arabia J Geol Soc India 97(5):539–554
  • 44. Radwan F, Alazba A, Mossad A (2017) Watershed morphometric analysis of Wadi Baish Dam catchment area using integrated GIS-based approach. Arab J Geosci 10(12):256
  • 45. Radwan F, Alazba A, Mossad A (2020a) Analyzing urban watersheds morphometric in arid and semiarid regions using the complementarity of RST and GIS. Arab J Geosci 13(23):1–21
  • 46. Radwan F, Alazba AA, Mossad A (2018) Estimating potential direct runoff for ungauged urban watersheds based on RST and GIS. Arab J Geosci 11(23):748. https://doi.org/10.1007/s12517-018-4067-4
  • 47. Radwan F, Alazba AA, Mossad A (2019) Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophys 67(1):215–229. https://doi.org/10.1007/s11600-018-0233-z
  • 48. Radwan F, Alazba AA, Mossad A (2020b) Analyzing the geomorphometric characteristics of semiarid urban watersheds based on an integrated GIS-based approach. Mod Earth Syst Environ 6(3):1913–1932. https://doi.org/10.1007/s40808-020-00802-0
  • 49. Rahmani F, Fattahi MH (2021a) A multifractal cross-correlation investigation into sensitivity and dependence of meteorological and hydrological droughts on precipitation and temperature. Nat Hazards 109(3):2197–2219
  • 50. Rahmani F, Fattahi MH (2021b) Phase space mapping of pivotal climatic and non-climatic elements affecting basin’drought. Arab J Geosci 14(5):1–12
  • 51. Ramadan MS, Effat HA (2021) Geospatial modeling for a sustainable urban development zoning map using AHP in Ismailia Governorate. Egypt Egypt J Remote Sens Space Sci 24(2):191–202
  • 52. Saaty TL (1980) The analytical hierarchy process: planning, priority setting, resource allocation. RWS publication, Pittsburg
  • 53. Sobhani G (1976) A review of selected small watershed design methods for possible adoption to Iranian conditions. M.S. Thesis, Utah State University, Logan, UT
  • 54. Soltani M, Solaimani K, Habibnejad Roshan M, Jalili K (2018) Comparative site selection of rainwater harvesting (RWH) based-on AHP in GIS environment (two case Study; Meykhoran and Khosroabad Watershed, Iran). Desert Ecosyst Eng J 7(18):49–62
  • 55. Soomro AG, Babar MM, Arshad M, Memon A, Naeem B, Ashraf A (2020) Spatiotemporal variability in spate irrigation systems in Khirthar National Range, Sindh, Pakistan (case study). Acta Geophys 68(1):219–228
  • 56. Statista (2022) Annual volume of precipitation in Saudi Arabia. https://www.statista.com/statistics/800242/saudi-arabia-annual-precipitation-volume/. Accessed June, 1st 2022
  • 57. Todmal RS (2020) Understanding the hydrometeorological characteristics and relationships in the semiarid region of Maharashtra (western India): implications for water management. Acta Geophys 68(1):189–206
  • 58. Ungureanu N, Vlăduț V, Voicu G (2020) Water scarcity and wastewater reuse in crop irrigation. Sustainability 12(21):9055
  • 59. USGS (2015) What is A Gis? http://webgis.wr.usgs.gov/globalgis/tutorials/what_is_gis.htm. Accessed 10 November 2015
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb2e9639-5ac6-4f7b-9a5a-01662d2b6926
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.