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Iterative learning control with sampled-data feedback
for robot manipulators

KAMEN DELCHEV, GEORGE BOIADJIEV, HARUHISA KAWASAKI and TETSUYA MOURI

This paper deals with the improvement of the stability of sampled-data (SD) feedback
control for nonlinear multiple-input multiple-output time varying systems, such as robotic ma-
nipulators, by incorporating an off-line model based nonlinear iterative learning controller. The
proposed scheme of nonlinear iterative learning control (NILC) with SD feedback is applicable
to a large class of robots because the sampled-data feedback is required for model based feed-
back controllers, especially for robotic manipulators with complicated dynamics (6 or 7 DOF,
or more), while the feedforward control from the off-line iterative learning controller should be
assumed as a continuous one. The robustness and convergence of the proposed NILC law with
SD feedback is proven, and the derived sufficient condition for convergence is the same as the
condition for a NILC with a continuous feedback control input. With respect to the presented
NILC algorithm applied to a virtual PUMA 560 robot, simulation results are presented in order
to verify convergence and applicability of the proposed learning controller with SD feedback
controller attached.

Key words: sampled-data systems, iterative learning control, robot manipulators, conver-
gence analysis

1. Introduction

Sampled-data systems are a class of control systems, where a continuous-time plant
is controlled by a discrete-time controller [1-3]. The stabilization of sampled-data sys-
tems (SD stabilization problem) is motivated by the use of digital computers in most
recent controllers. In particular, a robot arm with rotational joints controlled by a pro-
grammable industrial controller is a typical nonlinear time-varying sampled-data (SD)
system. The difference between the discrete system and the SD one is shown in Fig. 1(a)
and Fig. 1(b), correspondingly, where PPP is a plant and CCC is a feedback controller, solid
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lines represent continuous signals and dotted lines represent discrete signals, and SSS and
HHH are a sampler (Analog to Digital Converter) and a holder (Digital to Analog Con-
verter), correspondingly, and t ∈ [0,T ], {tk : tk = kts}K

k=0 ⊂ [0,T ], K = ⌊T/ts⌋, where ⌊⌋
denotes the integer part of a real number, and ts is the sampling interval. Three basic ap-
proaches for SD controller design are discussed by Petrew et al. [1]: 1) continuous-time
emulation design, 2) discrete-time discretization design, and 3) sampled-data direct de-
sign. Unfortunately, the efficiency of these methods for SD system stabilization requires
sufficiently high sampling rate. Therefore, in [4] a feedforward gain was proposed to
improve significantly control efficiency. It is well known in the literature [5-7] that the
best approach for an improvement of the feedforward control for uncertain systems is
the Iterative Learning Control (ILC).

Figure 1. (a) Control of a discrete system [1]; (b) Control of a sampled-data system [1].

The ILC is a class of adaptive algorithms, which improves the tracking accuracy of
repetitive processes. The ILC is based on the idea that the information from previous
trial is used to update the feedforward control law in order to obtain better performance
of the assigned task on the next trial [5-7]. The following postulates are required for
classical ILC [6,8]: every trail ends in a fixed time of duration, repetition of the initial
setting (initial state coordinates) is satisfied, invariance of the system dynamics is en-
sured throughout the repetition, and the system output is measured in a deterministic
way.

Linear iterative learning control (LILC) is an ILC for linear systems or based on
a linear model of nonlinear systems [5,6]. If the linear approximation of a nonlinear
dynamics results in great uncertainties, the corresponding LILC may fail to ensure the
admissible tracking accuracy. In this case, one should resort to nonlinear models and
nonlinear iterative learning control (NILC) [5,7]. In this paper, a nonlinear multiple-
input-multiple-output (MIMO) dynamic model is considered. The ILC update-laws, pro-
posed in [5] for linear or nonlinear dynamic systems, utilize learning operators which are
constant gain-matrices or do not concern the robot dynamic model. Another approach to
learning operator synthesis is based on the dynamic models with estimated parameters,
respectively [9,10].

A classical off-line sampled-data ILC scheme for a plant with a sampled-data feed-
back controller attached is depicted in Fig. 2(a) [2] where sampled signals (dotted lines)
from a continuous plant P are processed with the digital learning and feedback con-
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trollers L and C, and where feedforward and feedback control signals (solid lines) are
obtained by using a hold device H on the discrete-time signals generated by both con-
trollers. So, the feedback and feedforward channels have equal sampling rate (Fig. 2(a)),
and therefore, SD ILC is a particular case of the multirate ILC [2, 11] shown in Fig. 2
b), where the sampling rate for the feedback loop (dotted lines in Fig. 2(b)) is different
than the sampling rate for the feedforward loop (dashed lines in Fig. 2(b)).

Figure 2. (a) Sampled-data ILC with a sampled-data feedback and sampled signals (dotted lines) have the
same sampling rates ; (b) Multirate ILC - the sampling rate for the feedback loop (dotted lines) is different
than the sampling rate for the feedforward loop (dashed lines).

In this paper we consider the special case of a continuous ILC for continuous non-
linear time-varying system (plant P in Fig. 3) with a sampled-data feedback controller
attached. This case is applicable to ILC for robot manipulators with multi-joint arms
with 4-6 degree of freedom (DOF) [9] or redundant kinematic structure [12]. This paper
is aimed to present a model based nonlinear ILC with SD feedback and to prove the
stability (uniform asymptotic convergence) of the new ILC law for robot manipulators,
and to verify the proposed ILC algorithm by computer simulations of PUMA 560 robot
manipulator.

The paper is organized as follows. Section 2 presents the design of a nonlinear ILC
with a SD feedback for robot manipulators. Section 3 introduces the robustness and
convergence analysis of the presented learning algorithm. The proposed ILC procedure
with the SD feedback is validated and examined by computer simulation in Section 4.

2. Formulation of the problem

We consider robotic manipulator with n-DOF. The nonlinear multiple-input
multiple-output (MIMO) dynamic model of the robot is based on the Lagrange’s for-
mulation of equations of motion in the space of generalized coordinates:

A(ql) q̈l +b(ql,q̇l)+Dq̇l +g(ql)+ f = u (1)
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where l = 0,1, . . . ,N is the iteration number, ql is the n× 1 vector of generalized coor-
dinates (joint angles), qi

l ∈ [Q∗
i ,Q

∗∗
i ], i = 1, ...,n, Q∗∗

i is the upper joint limit and Q∗
i is

the lower joint limit of qi
l; A(ql) is the n×n symmetric positive-definite inertia matrix;

the n× 1 vector b(ql ,q̇l) takes into account the Coriolis and centrifugal torques; D =
diag{δ1, ... ,δn} denotes the diagonal n×n matrix of the coefficients of viscous friction;
g(ql) is the n× 1 vector representing gravity torques; f = [ f1sign(q̇1

l ) ... fnsign(q̇n
l )]

T

is the vector of coefficients of Coulomb friction and u = ul + uc is the n × 1 vector
of generalized torques where ul and uc are feedforward and feedback terms, respec-
tively. The allowable set of generalized torques is a rectangular hyper-parallelepiped:
ui ∈ [−Umax

i ,Umax
i ; Umax

i and −Umax
i are the upper and lower limits of the control signal

ui.
The synthesis of an ILC with SD feedback consists of three steps: first, synthesis

of an update control law, then, synthesis of a SD-feedback control law, and finally,
specification of a learning operator. We assume the following notations: h(·) = h and
H(·, ·) = H, and || · || denotes Euclidean norm.

For the nonlinear MIMO dynamic model in equation (1), we propose the following
feedforward update law:

ul+1 = ul +L[q̈d − q̈l +Lv(q̇d − q̇l)+Lp(qd −ql)] (2)

where: l = 0,1, ...,N is the iteration number of the ILC procedure, qd is an attainable
and desired trajectory and ql is the output trajectory at the lth iteration; L = L(ql(t)),
is a learning operator; u0 = u0(t) is the initial feed-forward control input; t : t ∈ [0,T ]
is the tracking time and [0,T ] is the robot tracking time interval; Lv and Lp are learning
control gains.

It has to be mentioned that, the calculation of ul+1 in Eq. (2) is offline and in the
case of noisy measurements of ql or q̇l , a commonly used method is to low-pass filter
the measured data and then differentiate the resultant signal.

Let us assume the following notations:

h(tk)≡ hk,H(hk)≡ Hk,{tk : tk = kts}K
k=0 ⊂ [0,T ], K = ⌊T/ts⌋

and

h∗(hk, t)≡ h∗,t , h∗(hk, t) =

{
hk, ∀t ∈ [tk, tk+1)

hK , ∀t ∈ [tK ,T ]
, k = 0,1...K −1

is continuous piecewise-constant function on [0,T ], and ts is the sampling interval. Then,
we consider the following continuous piecewise-constant feedback control term [13]

u∗,t
c ≡ u∗

c(u
k
c, t) : uk

c = Âk[q̈k
d +Kv(q̇k

l − q̇k
d)+Kp(qk

l −qk
d)]+ b̂k + D̂q̇k

l + ĝk + f̂k (3)

where: Âk = Â(q(tk)) and Â is an estimate of the inertia matrix A, obtained by a param-
eter identification technique, b̂k, D̂, ĝk, and f̂k are the corresponding estimates of bk, D,
gk, and fk; Kv and Kp are the feedback gains.
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Usually, the learning operator should be selected to satisfy a sufficient condition
for convergence of the ILC algorithm [5,9]. Therefore, the third step (learning operator
selection) of the ILC synthesis will be completed after the proof of the learning conver-
gence.

Figure 3. Continuous-time ILC scheme with sampled-data feedback.

Equations (1), (2) and (3) describe the following classical off-line ILC scheme with
SD feedback depicted in Fig. 3 where P represents the robot arm; C and L are feed-
back and feed-forward controllers, respectively; M is the memory of the control sys-
tem; the input trajectory ui is the feed-forward term of the control law u = ul +uc and
l = 0,1, ...,N is the current iteration number; ql is the actual output trajectory; qd is
the desired output trajectory; S and H are the sampler and the holder, correspondingly.
The off-line computed feed forward term ui+1 improves the tracking performance of the
robot on the next iteration.

In contrast to the SD ILC and multirate ILC schemes shown in Fig. 2(a) and 2(b), we
assume that the proposed ILC (Fig. 3) is continuous because of the following reasons:

• The digital ILC controller (computer) calculates off-line the feedforward control
term. Therefore, the discretization frequency (sampling rate) of the output of the
learning controller could be as high as needed. For example, if the robot actuators
are controlled by a PWM (Pulse Width Modulation) signal, the sampling rate of
the feedforward control output faster than the duty cycle command rate of the
PWM will not be reflected in the PWM output [14] and the feedforward output
could be assumed as a continuous one.

• The ILC systems with input and output signals that are transmitted through a com-
munication network (networked ILC systems [3]) require a sampled-data or a mul-
tirate ILC, but this is not the typical case of industrial robot applications. That’s
why we don’t consider networked ILC systems in this paper.

• Recently, several multirate ILC schemes have been proposed to guarantee good
learning transient (acceptable transient error) [11]. As the learning transient (tran-
sient growth) is the major problem for the applicability of a nonlinear ILC [15],
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we use the bounded error ILC algorithm [10] in order to solve this problem in
a safe, fast and simple manner and consequently multirate ILC schemes are not
needed to solve the learning transient problem.

It has to be mentioned that the output signal of the feedback controller, depicted by
dotted line in Fig. 3, has not to be assumed as a continuous one because it has to be
calculated online in real-time. Moreover, the calculation time of the feedback, generated
by the proposed model based (dynamics based) controller in Eq. (3), cannot be neglected
especially for a multi-joint robotic arm and a zero-order holder which generates a piece-
wise constant signal (staircase signal) must be used.

3. Convergence and robustness of the learning control with a sampled-data
feedback

In this section we present the main result of this paper, that is, the proof of the
robustness and convergence of the proposed ILC scheme with a sampled-data feedback.

3.1. A sufficient condition for convergence and robustness of ILC for a class of nonlinear
time-varying systems

We consider a class of multi-input-multi-output nonlinear time-varying systems de-
scribed by the following state-space equations [16,17]:

ẋl(t) = f (xl(t), t)+B(xl(t), t)ul(t)+ωl(t)
yl(t) = g(xl(t), t)

(4)

where, for l ∈ {0,1...,∞} and all t ∈ [0,T ], xl(t) ∈ ℜn, yl(t) ∈ ℜm, ul(t) ∈ ℜr are not
necessarily continuous, and ωl(t) ∈ ℜn represents both deterministic and random distur-
bances. The functions f : ℜn × [0,T ]→ ℜn and B : ℜn × [0,T ]→ ℜn×r are piecewise
continuous in t ∈ [0,T ] and g : ℜn× [0,T ]→ ℜm is differentiable in x and t, with partial
derivatives gx(·, ·) and gt(·, ·). In addition, the following assumptions hold [16,17]:

I. For each fixed initial state x(0) with ω(·) ≡ 0 the output map O : C([0,T ],ℜr)×
ℜn → C([0,T ],ℜm) and the state map S : C([0,T ],ℜr)×ℜn → C([0,T ],ℜn) are
one-to-one. In this notation yl(·) = O(ul(·),xl(0)) and xl(·) = S(ul(·),xl(0)).

II. The disturbance ωl(·) is bounded on [0,T ] i.e. ∥ω(t)∥¬ bω.

III. The functions f (·, ·), B(·, ·), gx(·, ·), and gt(·, ·) are uniformly globally Lipschitz
in x on the interval [0,T ].

IV. The operators B(·, ·) and gx(·, ·) are bounded on [0,T ]×ℜn.

V. All functions are assumed measurable and integrable.
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Let us consider the following learning update law

ul+1(t) = (1− γ)ul + γu0 +L(yl, t)(ẏd − ẏl) (5)

where L : ℜm × [0,T ] → ℜr×m is a bounded learning operator, yd(t) ≡ y0(t) and γ ∈
[0.1) allows the influence of a bias term [16]. Equation (5) describes a standard D-type
(Differential-type) NLIC for a class of nonlinear time-varying systems (Eq. (4)), with a
nonlinear time-varying learning operator.

Lemma 3 [16] If {al}, l ∈ {0,1...,∞} is a sequence of real numbers such that
|al+1|¬ ρ |al|+ ε, 0¬ ρ < 1, then limsup

l→∞
|al|¬ (1−ρ)−1ε.

The proof of Lemma 1 is presented in [16].

We define the time-weighted norm (λ norm) for a function h(t), t ∈ [0,T ] by
∥h(t)∥λ = sup

t∈[0,T ]
e−λt ∥h(t)∥.

Lemma 4 If hk is a discrete form of h(t), t ∈ [0,T ] (hk = h(tk), {tk : tk = kts}K
k=0 ⊂

[0,T ]) and h∗,t is the corresponding continuous piecewise-constant function on [0,T ],
then ∥h∗,t∥λ ¬ ∥h(t)∥λ.

The proof of Lemma 2 is presented in Appendix 1.

Theorem 4 [16,17] Let the system described by equation (3) satisfy Assumptions I-V
and use the update law in Eq. (5). Given an attainable desired trajectory yd(t) =
g(xd(t), t), t ∈ [0,T], ud(t) is the corresponding input and xd(t) is the corresponding
state (according to I). If

∥(1− γ)I−L(g(x, t), t)gx(x, t)B(x, t )∥¬ ρ < 1 , ∀(x, t) ∈ Rn × [0,T ] (6)

and the initial state error ∥xd(0)− xl(0 )∥ is bounded by bx0, then, as l → ∞, the error
between ul(t) and ud(t) is bounded. In addition, the state and output asymptotic errors
are bounded. These bounds depend continuously on the bound on the initial state error,
bound on the state disturbance, and γ, as bx0, bω, and γ tend to zero, these bounds also
tend to zero.

The proof of Theorem 1 for continuous systems (see Eq. (4)) is presented in [16,17].
Consequently, the learning operator remains to be specified so that the sufficient condi-
tion for robustness and convergence, Eq. (6), to hold.

Corollary 1 [16] If the update law (5) is replaced with

ul+1(t) = (1− γ)ul + γu0 +L(yl, t)(ẏd − ẏl)+K(yl, t)(yd −yl) (7)

with K(·, ·) bounded, then Theorem 1 still holds.
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The proof of Corollary 1 is presented in [16]. Equation (7) describes a PD-type ILC.
It has to be mentioned that for robust convergence the update law (7) and (5) must

contain derivatives of the output ẏd − ẏl [16].
In all practical cases of robotic manipulators the input signal belongs to a compact

subset ui ∈ [−Umax
i ,Umax

i ] and the output trajectory belongs to the subset qi
l ∈ [Q∗

i ,Q
∗∗
i ],

i = 1, ...,n. If the ILC update law (see Eq. (3)) produces a feedforward input that is out
of the allowable compact set of inputs, and this set is a convex set, then projecting back
into the allowable set ensures the validity of Theorem 1 [16]. If the output trajectories
are out of the corresponding allowable set due to trajectory errors, then an application of
the ‘Bounded-error algorithm’ presented in [10] can solve this problem for NILC.

3.2. A sufficient condition for convergence and robustness of the ILC with the SD
feedback for robot manipulators

In this subsection we present the proof of the robustness and convergence of the
proposed ILC scheme with a sampled-data feedback. The main idea is to prove Theorem
1 for the considered ILC design with the SD feedback.(

q̇l

q̈l

)
=

(
q̇l

−A−1(b+Dq̇l +g)

)
+

(
0
A−1

)
u∗,t

c +

(
0

−A−1

)
f+

(
0
A−1

)
ul. (8)

Let us define

ẋl =

(
q̇l

q̈l

)
f = f1(ql, q̇l)+B(ql) f ∗,t2 (qk

l , q̇
k
l ), f1 =

(
q̇l

−A−1(b+Dq̇l +g)

)
and

f ∗,t2 ≡ f ∗2 ( f k
2 , t) : f k

2 = Âk(q̈k
d +Kv(q̇k

l − q̇k
d)+Kp(qk

l −qk
d))+ b̂k + D̂q̇k

l + ĝk (9)

B =

(
0
A−1

)
, and yl = xl . Thus, treating the Coulumb friction as a disturbance ωl =(

0
−A−1

)
(f− f̂), from equation (8) we obtain equation (4) for r = m = n.

Let us consider the continuous feedback control law proposed in [13] which corre-
sponds to the discrete feedback law defined by Eq. (3):

uc(ql, q̇l, t) = Â[q̈d +Kv(q̇l − q̇d)+Kp(ql −qd)]+ b̂+ D̂q̇l + ĝ+ f̂. (10)

Using Eq. (9) and Eq. (10) we obtain the continuous form of f ∗,t2

f2 = Â[q̈d +Kv(q̇l − q̇d)+Kp(ql −qd)]+ b̂+ D̂q̇l + ĝ. (11)

To apply Theorem 1 we need to check that Assumptions I-V are satisfied. In [16] it
is proven that f1, f2 and B satisfy Assumptions I-V, and consequently, we can apply
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Theorem 1 to the system in Eq. (8) with the continuous feedback given by Eq. (10) and
the update law in Eq. (2). Thus, to prove the convergence of the considered ILC scheme
with the SD feedback we have to prove Theorem 1 for the continuous piecewise-constant
feedback control law in Eq. (3).

Let us define δul ≡ ud(t)− ul(t) and δẏl ≡ ẏd(t)− ẏl(t). Because in all practical
cases the input signal belongs to a compact subset of ℜr further we will consider that
ul(t), t ∈ [0,T ] : ∥ul(t)∥∞ ¬ bu where ∥ul(t)∥∞ = sup

t∈[0,T ]
∥ul(t)∥ is the supremum norm.

For simplification, we introduce the following notations:

xl ≡ xl(t) xd ≡ xd(t)

yl ≡ yl(t) yd ≡ yd(t)

ul ≡ ul(t) ud ≡ ud(t)

ωl ≡ ωl(t)

fl ≡ fl(xl(t), t) fd ≡ fd(xd(t), t)

Bl ≡ Bl(xl(t), t) Bd ≡ Bd(xd(t), t)

gxl ≡
∂
∂x

g(x(t), t)
∣∣x=xl(t) gxd ≡ ∂

∂x
g(x(t), t)

∣∣x=xd(t)

gtl ≡
∂
∂t

g(x(t), t)
∣∣x=xl(t) gtd ≡ ∂

∂t
g(x(t), t)

∣∣x=xd(t)

and kgx, kgt , k f , kB are Lipschitz constants for gx(·, ·), gt(·, ·), f (·, ·) and B(·, ·) respec-
tively, and bgx, bud , b f 2d , bL and bB are the corresponding norm bounds on gx(·, ·), ud(·),
f ∗,td2 (·, ·), L(·, ·) and B(·, ·).

Now we proceed to prove a sufficient condition for convergence and robustness of
the ILC with the SD feedback for robot manipulators described in Eqs. (8), (5) and (3).

Theorem 5 Let the system of robot dynamics with a SD feedback controller attached is
described by the state-space equations in (8) where the feedback control law is given
by Eq. (9) with the piecewise-continuous function f ∗,t2 and the function f2 in Eq. (11)
is the continuous form of f ∗,t2 . If the system in (8) with f = f1(ql, q̇l)+B(ql) f2(ql, q̇l),
i.e. – the feedback control is given by f2 in Eq. (11), satisfies Assumptions I-V and the
sufficient condition (6) for robustness and convergence of the ILC law (5) is satisfied,
then the Theorem 1 also holds for the system (8) with SD feedback given by f ∗,t2 in Eq.
(9) and the ILC update law in (5).

Proof From Eq. (5) it follows

δul+1 = ud − (1− γ)ul − γu0 −Lδẏl. (12)
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Using the above notations for δẏl from Eq. (4) we obtain:

δẏl = gxd( fd +Bdud)+gtd −gxl( fl +Blul +ωl)−gtl. (13)

Combining Eq. (13) with gxl( fd +Bdud +Bl f ∗,td2 )− gxl( fd +Bdud +Bl f ∗,td2 ), gxl(Blud −
Blud), fl = fl1 +Bl f ∗,tl2 and fd = fd1 +Bd f ∗,td2 yields

δẏl = (gxd −gxl)( fd +Bdud)+gxl( fd1 − fl1)+gxlBl( f ∗,td2 − f ∗,tl2 )

+ gxl(Bd −Bl)(ud + f ∗,td2 )+gxlBl(δul)+(gtd −gtl)−gxlωl.
(14)

Combining Eq. (12) with γud − γud and Eq. (14) yields

δul+1 = (1− γ)δul + γδu0 −L


gxlBl(δul)+(gxd −gxl)( fd +Bdud)

+gxl( fd1 − fl1)+gxlBl( f ∗,td2 − f ∗,tl2 )

+gxl(Bd −Bl)(ud + f ∗,td2 )

+(gtd −gtl)−gxlωl

 . (15)

Taking norms, using the bounds and using the Lipschitz conditions (see assumptions
II-IV) from Eq. (15) we obtain:

∥δul+1∥¬ ∥(1− γ)I−LgxlBl∥∥δul∥+ γ∥δu0∥
(16)

+bL
[
(kgxbd + kgt +bgx(k f 1 + kB(bud +b f 2d)))∥δxl∥+ k f 2bgxbB

∥∥δx∗,tl

∥∥+bgxbω
]
.

Multiplying (16) by e−λt , defining k1 = bL(kgxbd +kgt +bgx(k f 1+kB(bud +b f 2d))), k2 =
bLk f 2bgxbB and k3 = bLbgx, and assuming the sufficient condition for convergence (6)
the inequality (16) simplifies to

e−λt ∥δul+1∥
(17)

¬ ρe−λt ∥δul∥+ γe−λt ∥δu0∥+ k1e−λt ∥δxl∥+ k2e−λt
∥∥δx∗,tl

∥∥+ k3e−λtbω.

Taking the supremum of both sides of (17) and applying Lemma 2 to δx∗,tl yields

sup
t∈[0,T ]

e−λt ∥δul+1∥¬ ρ sup
t∈[0,T ]

e−λt ∥δul∥+ γ sup
t∈[0,T ]

e−λt ∥δu0∥

(18)
+(k1 + k2) sup

t∈[0,T ]
e−λt ∥δxl∥+ k3bω.

Using the time-weighted norm definition and defining k = k1 + k2 from (18) we obtain

∥δul+1∥λ ¬ ρ∥δul∥λ + γ∥δu0∥λ + k∥δxl∥λ + k3bω. (19)
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On the other hand, using the integral expression

xl(t) = xl(0)+
t∫

o

(B(xl(τ),τ)ul(τ)+ f (xl(τ),τ)+ωl(τ))dτ

where f (x(t), t) = f1(x(t), t)+B(x(t), t) f ∗,t2 (x(t), t) and f ∗,t2 (x(t), t), t ∈ [0,T ] is contin-
uous piecewise-constant function, and taking norms for ∥δxl∥ we have

∥δxl∥¬ ∥δxl(0)∥+
t∫

o

∥Bdud −Blul∥dτ+
t∫

o

∥ f1d − f1l∥dτ

(20)

+

t∫
o

∥∥Bd f ∗,τ2d −Bl f ∗,τ2l

∥∥dτ+
t∫

o

∥ωl∥dτ.

Adding Bl f ∗,td2 −Bl f ∗,td2 and Blud −Blud to Eq. (20), and using the bounds, and the Lips-
chitz conditions yields

∥δxl∥¬ ∥δxl(0)∥+bB

t∫
o

∥δul∥dτ+ k4

t∫
o

∥δxl∥dτ+ k5

t∫
o

∥∥δx∗,τl

∥∥dτ+bωt (21)

where k4 = (kB(bud +b f 2d)+k f 1) and k5 = bBk f 2. Multiplying (21) by e−λt we have that

e−λt ∥δxl∥¬ e−λt ∥δxl(0)∥+bBe−λt
t∫

o

e−λτ ∥δul∥eλτdτ

(22)

+k4e−λt
t∫

o

e−λτ ∥δxl∥eλτdτ+ k5e−λt
t∫

o

e−λτ∥∥δx∗,τl

∥∥eλτdτ+bωte−λt .

Noticing that e−λt is always of the same sign and sup
t∈[0,T ]

e−λt
∥∥δx∗,tl (t)

∥∥ ¬
sup

t∈[0,T ]
e−λt ∥δxl(t)∥, (see Lemma 2), and applying the Second Mean Value Theorem for

Integrals [18] to the integral expressions in inequality (22) yields:

e−λt ∥δxl∥¬ e−λt ∥δxl(0)∥+bBe−λt sup
τ∈[0,t]

e−λτ ∥δul∥
t∫

o

eλτdτ

(23)

+

[
k4e−λt sup

τ∈[0,t]
e−λτ ∥δxl∥+ k5e−λt sup

τ∈[0,t]
e−λτ ∥δxl∥

] t∫
o

eλτdτ+bωte−λt .
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Taking into account that sup
τ∈[0,t]

e−λτ ∥δxl∥ ¬ sup
t∈[0,T ]

e−λt ∥δxl∥, t ∈ [0,T ] and taking the

supremum of both sides of (23) we have that

∥δxl∥λ ¬ ∥δxl(0)∥λ +bB(1− e−λT )λ−1∥δul∥λ + k6(1− e−λT )λ−1∥δxl∥λ +bωT (24)

where k6 = k4 + k5. Thus, from inequality (24) we obtain

∥δxl∥λ ¬ λ(λ− k6(1− e−λT ))−1∥δxl(0)∥λ
(25)

+bB(1− e−λT )(λ− k6(1− e−λT ))−1∥δul∥λ +λT (λ− k6(1− e−λT ))−1bω.

Combining inequalities (19) and (25) yields

∥δul+1∥λ ¬
kλ

λ− k6(1− e−λT )
∥δxl(0)∥λ

(26)

+

[
ρ+

kbB(1− e−λT )

λ− k6(1− e−λT )

]
∥δul∥λ +

[
k3 +

kλT
λ− k6(1− e−λT )

]
bω + γ∥δu0∥λ.

Defining ρ̄ = ρ + kbB(1 − e−λT )(λ− k6(1− e−λT ))−1, k7 = kλ(λ− k6(1− e−λT ))−1,
k8 = (k3 + kλT (λ− k6(1− e−λT ))−1) and ε = k7∥δxl(0)∥λ + k8bω + γ∥δu0∥λ we have
that

∥δul+1∥λ ¬ ρ̄∥δul∥λ + ε. (27)

Since ρ < 1 we can find λ > k6(1− e−λT ) : ρ̄ < 1. Thus we can apply Lemma 1 so that

limsup
l→∞

∥δul+1∥λ ¬ (1− ρ̄)−1ε (28)

implying that ul converges to ud when l → ∞, ∥δxl(0)∥→ 0, bω → 0 and γ → 0 implying
that ε → 0.

It has to be mentioned that all corollaries of Theorem 1 proven in [16] for continuous-
time systems are also valid for Theorem 2 (for nonlinear time-varying systems with
sampled-data feedback) implying that the Corollary 1 holds and the proposed ILC update
law (2) is robust and convergent if the sufficient condition for convergence (6) is satisfied.

The main contribution of Theorem 2 is that it proves the asymptotic convergence of
ILC with Sampled-Data feedback controller, because only the asymptotic convergence
of an ILC can assure its practical implementation. Thus, applying Theorem 2 to prove the
convergence of considered ILC algorithm with SD feedback, for the nonlinear system in
Eq. (8) one can obtain from Eq. (6) the simplest (γ = 0, yl ≡ xl) sufficient condition for
convergence of the proposed ILC design for robotic manipulators [16]:∥∥I−LA−1∥∥¬ ρ < 1 (29)
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where I is the identity matrix of size n.
From Eq. (12), following Arimoto’s ideas in [5] for better convergence rate, we con-

sider a learning operator to be as close as possible to the inertia matrix. Therefore, we
propose the learning operator to be identically equal to Â, i.e. - L ≡ Â [9]. Thus, the last
(third) step of the ILC synthesis for robotic manipulators is completed by specification
of the learning operator.

4. Simulation results

In this section, we present the simulation results from implementation of the ILC
with SD feedback described in the previous sections. We consider the dynamic model of
PUMA 560, 6 DOF, robot reported in [19] and given by Eq. (1).

For a realistic computer simulation of parameter uncertainty we are going to use two
sets of model parameters. We assume the explicit dynamic model of PUMA560 robot
arm (left-hand side of the Eq. (1)) with parameters reported by Armstrong et al. [19],
Corke, and Armstrong-Helouvry [20]. This first set of model parameters is described in
Tab. 1 and we consider them as virtual parameters ξ = (ξi

1, ...,ξ
i
13), i = 1, ...,6, where i

corresponds to the link number.
For the learning-control-input synthesis, we assume the PUMA 560 model pa-

rameters estimated by Tarn et al. [21]. This second set of parameters, pointed out as
ξ̂ = (ξ̂i

1, ..., ξ̂
i
14), i = 1, ...,6, is shown in Tab. 2 and we consider it as the set of identifi-

cation estimates of the virtual parameters.
Let the desired trajectory be given in generalized (joint) coordinates by:

q1
d(t)≡ 0 q2

d(t) =−2cos(4t)+2 q3
d(t) =−cos(4t)+1

q4
d(t) =−3cos(4t)+3 q5

d(t) =−1.5cos(4t)+1.5 q6
d(t)≡ 0

(30)

and t ∈ [0,0.25π]. Thus, for qi
l ∈ [−2π,2π], i = 1,2...,6, L ≡ Â, combining Eq. (1) with

Eq. (2) and Eq. (3) yields the control law of the proposed NILC with SD feedback:

Aq̈l+1 +b+Dq̇l+1 +g+ f = ul + Â[q̈d − q̈l +Lv(q̇d − q̇l)+Lp(qd −ql)]
(31)

+Âk[q̈k
d +Kv(q̇k

l+1 − q̇k
d)+Kp(qk

l+1 −qk
d)]+ b̂k + D̂q̇k

l+1 + ĝk + f̂k

where l ∈ {0,1...,N}, Â, b̂, D̂, ĝ and f̂, calculated by using parameters in Tab. 2, are the
corresponding estimates of A,b,D, g, and f in Eq. (1), calculated by using parameters in
Tab. 1.

We are able to validate inequality (29) for qi
l ∈ [−2π,2π], i = 1, ...,6. A computation

of the maximum of the left-hand side of (29) results in: max
qi

l

∥∥∥I− Â(ql, ξ̂)A−1(ql,ξ)
∥∥∥ ≈

0.6013 with a tolerance of ±0.0018 and consequently the sufficient condition for con-
vergence (29) holds with respect to qi

l ∈ [−2π,2π], i = 1, ...,6, and the NILC procedure
proposed in Eq. (31) is convergent.
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Table 3. Model parameters of the virtual robot arm.

ξξξ Links 1 2 3 4 5 6

Mass values [kg] (without Wrist)

ξi
1 mi, i = 1, ...,6 – 17.4 4.8 0.82 0.35 0.09

Link center of gravity (COG) [mm]

ξi
2 Sxi – 68 0 0 0 0

ξi
3 Syi – 6 -70 0 0 0

ξi
4 Szi – -16 14 -19 0 32

Moments of inertia about COG [kgm2]

ξi
5 Ixxi – 0.130 66.0e-3 1.8e-3 300e-6 150e-6

ξi
6 Iyyi – 0.524 12.5e-3 1.8e-3 300e-6 150e-6

ξi
7 Izzi 0.35 0.539 86.0e-3 1.3e-3 400e-6 40e-6

Effective motor inertia [kgm2]

ξi
8 Jmi 0.784 2.305 0.576 0.1057 0.0946 0.1074

Kinematic constants

ξi
9 αi−1[deg.] 0 -90 0 90 -90 90

ξi
10 ai−1[m] 0 0 0.4318 -0.0203 0 0

ξi
11 di[m] 0 0.2435 -0.0934 0.4331 0 0

Viscous friction coefficients [Nmsec/rad]

ξi
12

δ−i , q̇i < 0 3.45 8.53 3.02 – – –
δ+i , q̇i > 0 4.94 7.67 3.27 – – –

Coulomb friction coefficients [Nm]

ξi
13

f−i , q̇i < 0 8.26 11.34 5.57 – – –
δ+i , q̇i > 0 8.43 12.77 5.93 – – –

The maximal error of the iterative learning procedure is given by:

emax = max
l
(emax

l ), l = 0,1, ...,N (32)

where
emax

l = max
t

∥ql(t)−qd(t)∥ , t ∈ [0,T ]. (33)

In fact, there are great differences between values of ξ and ξ̂ reported in Tab. 1 and Tab. 2,
respectively. Consequently a significant maximal initial tracking error emax

0 is expected.
Therefore, solving the nonlinear differential equation (1), for l = 0 Kv = −6 and Kp =
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Table 4. Model parameter estimates of the virtual robot arm.

ξξξ Links 1 2 3 4 5 6

Mass values [kg] (without Wrist)

ξi
1 mi, i = 1, ...,6 – 22.4 5 1.2 0.62 0.16

Link center of gravity (COG) [mm]

ξi
2 Sxi – 103 20 0 0 0

ξi
3 Syi – 5 -4 -3 -1 0

ξi
4 Szi – -40 14 -86 -10 3

Moments of inertia about COG [kgm2]

ξi
5 Ixxi – 0.403 74.8e-3 5.32e-3 487e-6 123e-6

ξi
6 Iyyi – 0.969 7.3e-3 5.20e-3 482e-6 123e-6

ξi
7 Izzi 0.177 0.965 75.6e-3 3.37e-3 572e-6 58e-6

Effective motor inertia [kgm2]

ξi
8 Jmi 0.776 2.34 0.5823 0.1057 0.0946 0.1074

Kinematic constants

ξi
9 αi−1[deg.] 0 -90 0 90 -90 90

ξi
10 ai−1[m] 0 0 0.4318 -0.0203 0 0

ξi
11 di[m] 0 0.2435 -0.0934 0.4331 0 0

Viscous friction coefficients [Nmsec/rad]

ξi
12

δ−i , q̇i < 0 3.85 8.89 5.31 – – –
δ+i , q̇i > 0 3.20 11.7 2.91 – – –

Coulomb friction coefficients [Nm]

ξi
13

f−i , q̇i < 0 6.74 13.0 5.87 – – –
δ+i , q̇i > 0 7.24 14.7 4.19 – – –

Torque limits [Nm]

ξi
14 Ûmax

i 100 180 90 25 25 25

−3, with u0(t) ≡ 0, uc ≡ u∗,t
c (q0, t, ξ̂) in Eq. (3), for sampling interval ts = 0.1[sec],

and with initial conditions q1(0) = 0, and q̇1(0) = 0 results in trajectories q0(t), (qi
0(t)),

which are depicted in Fig. 4 together with the desired trajectories (qi
d(t)).

Simulation results for the first iteration, shown in Fig. 4(a), reveal significant initial
tracking errors of the second and third joints. It has to be mentioned that the on-line
computation time of the feedback control (computed torque calculated by Matlab soft-
ware) is from 0.0620 sec. to 0.0940 sec. and, consequently, the sampling interval of
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Figure 4. The initial and desired trajectories, (a) qi
0, qi

d , i = 1,2,3; (b) qi
0, qi

d , i = 4,5,6.

0.1 sec. is adequate for simulation. The time of the offline computation (update) of the
feedforward control is approximately 30 sec., depending on the solution of the dynamic
equations, and in real implementation this calculation time could be reduced by use of
optimal spline approximation and powerfull computer system. The initial tracking error
emax

0 given by Eq. (33) for l = 1 arises not only due to parameter uncertainties but also
due to the large sampling interval ts = 0.1[sec]. For example, emax

0 = 3.1944[rad] for
ts = 0.1[sec] and emax

0 = 2.8745[rad] for ts = 0.0[sec].
The calculation of the maximal tracking errors emax

l for l = 0,1...20 by solving the
nonlinear differential equation (31) (Kv =−6, Kp =−3, Lv = 0, Lp = 0, u0(t)≡ 0, ts =
0.1[sec], ql(0) = 0, q̇l(0) = 0) reveals the convergence behavior and the convergence
rate of the proposed NILC with SD feedback. The profile of emax

i versus iteration number
is depicted (continuous line) in Fig. 5.

Figure 5. emax
i obtained by the standard (cont. line) and bounded-error (dotted line) algorithms.

Referring to Fig. 5 one can see a fast and monotonic convergence of the iterative
procedure and obviously in this case the maximal learning error emax given by Eq. (32)
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equals to the initial tracking error emax
0 . But a problem for the practical application of the

considered NILC arises because of the large initial error emax
0 and this problem can be

solved by using the ‘Bounded-error algorithm’ for NILC presented in [10].
The profile of emax

l obtained by the ‘Bounded-error algorithm’ (0.5[rad] error norm
bound) is shown (dotted line) in Fig. 5.

In order to illustrate how the feedforward control term ul(t), t ∈ [0,0.25π] compen-
sates for the uncertainties of the sampled data feedback control term u∗,t

c we investigate
by simulation the control input at the final 20th iteration which results in the profiles of
u∗,t

c , u20 and u shown in Fig. 6.
The graphs in Fig. 6(a), Fig. 6(b) and Fig. 6(c) show the feedback (ui

c,uc ≡ u∗,t
c ),

feedforward (ui
20), and the resultant (ui = ui

20 + ui
c, i = 1,2,3) control inputs for the

first, second and third joints correspondingly while the Fig. 6(d), Fig. 6(e), and Fig. 6(f)
illustrate the same control terms but for the fourth, fifth, and sixth joints of the robot arm.

Figure 6. Feedback ui
c: (a) i = 1,2,3, (d) i = 4,5,6; Feedforward ui

20: (b) i = 1,2,3, (e) i = 4,5,6; ui =

ui
20 +ui

c: (c) i = 1,2,3, (f) i = 4,5,6; Cont. line: i = 1,4; Dashed line: i = 2,5; Dotted line: i = 3,6.

Finally, the value-adding process of the continuous piecewise-constant feedback
control (dotted line) and the piecewise feedforward control (dashed line) that results
in the continuous control input (continuous line) of the second joint is schematically
represented in Fig. 7.

The simulation result shows that the piecewise continuous feedforward control com-
pensates for inaccuracies (instability) that arise from the piecewise-constant feedback
with sampling interval 0.1 sec. This sampling interval is relatively long and makes possi-
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ble real-time implementation (real-time computation) of complex dynamics-based feed-
back control taking into account properties of modern CPUs.

Figure 7. Feedback u2
c (dotted line), feedforward u2

20 (dashed line) and u2 = u2
20 +u2

c (cont. line).

5. Conclusions

The continuous nonlinear iterative learning control with sampled-data feedback pro-
posed in this paper for continuous nonlinear multiple-input multiple-output time vary-
ing systems, such as robotic manipulators, consists of two controllers (see Eq. (31)): a
continuous time learning controller (see Eq. (2)) and a sampled-data (SD) feedback con-
troller (see Eq. (3)). An off-line ILC scheme with SD feedback is presented in Fig. 3. The
SD feedback is required for feedback controllers based on complicated dynamic models,
for instance, dynamic models of 6 or 7 DOF robotic manipulators (see Eq. (31)). In this
case, the nonlinear model based feedback control requires a lot of on-line calculations
that cause a time delay and the corresponding sampling interval which should not be
neglected, while the learning controller requires off-line calculations and therefore, the
nonlinear model-based feedforward control can be assumed as a continuous one.

We came to the following conclusions for the proposed NILC with SD feedback for
robotic manipulators:

• The robustness and convergence of the proposed NILC with SD feedback is
proven (by Theorem 2) with respect to the time-weighted norm (λ norm) of the
control input error.

• The sufficient condition for robustness and convergence of the proposed NILC
with SD feedback is the same as the corresponding condition of a standard NILC
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with a continuous feedback controller attached implying that the convergence does
not depend on the sampling interval, as it is the case for other types of Sampled-
data ILC (Fig 2. (a)) and Multirate ILC (Fig 2. (b)) controllers.

• The proposed NILC with SD feedback for PUMA560 robotic manipulator is ro-
bust and convergent.

• The analysis of the iterative learning control simulations on the PUMA560 robot
reveals that at the final iteration the piecewise feedforward control term success-
fully compensates for the uncertainties of the continuous piecewise-constant feed-
back control term so that the sum of both terms is a continuous control input.

• The proposed solution to the instability problem in the Sampled-Data feedback is
the main contribution of this paper to the ILC implementation in practice.
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Appendix 1

Lemma 5 If h(tk) ≡ hk is a discrete form of h(t), t ∈ [0,T ], {tk : tk = kts}K
k=0 ⊂ [0,T ],

K = ⌊T/ts⌋, ts is the sampling interval and h∗,t ≡ h∗(hk, t) is the corresponding contin-
uous piecewise-constant function on [0,T ], then ∥h∗,t∥λ ¬ ∥h(t)∥λ.

Proof The λ norm of h(t), t ∈ [0,T ] is defined by

∥h(t)∥λ ≡ sup
t∈[0,T ]

e−λt ∥h(t)∥ . (A.1)

For continuous piecewise-constant functions it has to be mentioned that
∥∥h∗(hk, t)

∥∥ =∥∥hk
∥∥, ∀t ∈ [tk, tk+1)∪ [tK ,T ], t0 = 0, k = 0,1, ...,K −1, K = ⌊T/ts⌋.
Using

∥∥h∗(hk, t)
∥∥= ∥∥hk

∥∥ for the right-hand side of the definition (A.1) it follows:

sup
t∈[tk,tk+1)

e−λt
∥∥h∗(hk, t)

∥∥= ∥∥hk
∥∥ sup

t∈[tk,tk+1)

e−λt

∥∥hk
∥∥ sup

t∈[tk,tk+1)

e−λt = e−λtk
∥∥hk
∥∥ ,k = 0,1...K −1; (A.2)

sup
t∈[tK ,T ]

e−λt
∥∥h∗(hK , t)

∥∥= e−λtK
∥∥hK

∥∥ .
On the other hand for t ∈ [0,T ]

e−λt
∥∥h∗(hk, t)

∥∥= K−1
∪

k=0

{
e−λt

∥∥h∗(hk, t)
∥∥ , t ∈ [tk, tk+1)

}
∪
{

e−λt
∥∥h∗(hK , t)

∥∥ , t ∈ [tK ,T ]
}
.

(A.3)
Thus, from Eq. (A.2) and Eq. (A.3) it follows:

sup
t∈[0,T ]

e−λt
∥∥h∗(hk, t)

∥∥= max
k

e−λtk
∥∥hk
∥∥ ,k = 0,1, ...,K (A.4)

but
∥∥hk
∥∥≡ ∥h(tk)∥, k = 0,1, ...,K, t ∈ [0,T ] and

max
k

e−λtk ∥h(tk)∥¬ sup
t∈[0,T ]

e−λt ∥h(t)∥ . (A.5)

From Eq. (A.4) and inequality (A.5) we have

sup
t∈[0,T ]

e−λt
∥∥h∗(hk, t)

∥∥¬ sup
t∈[0,T ]

e−λt ∥h(t)∥ (A.6)

and using the definition (A.1), we obtain from inequality (A.6) that ∥h∗,t∥λ ¬ ∥h(t)∥λ.
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