PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmentally friendly synthesis of silver oxide nanoparticles using leaf extract from trumpet vine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Azo dyes represent a significant concern to the environmental regulations and proper wastewater treatment is crucial in mitigating its impact on ecosystems. This study investigates the removal of black azo dye from aqueous solution using silver oxide nanoparticles (Ag2O NPs) improved with green-like material. The trumpet vine leaf extracted was used as a capping and reducing agent to formulate the nanomaterial catalyst. A characteristics analysis using scanning electron microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), and Fourier-Transform Infrared Spectroscopy (FTIR) techniques was performed to examine the features of the catalyst. About 79% removal efficiency of azo black dye was reached using a 1.0 g/L dosage of the Ag2O nanoparticles under visible light exposure in batch mode reactor. The reusability analysis illustrates a stable behavior after five cycles of loading, and the kinetic study revealed that the reaction is compatible with the 1st order kinetic model. These findings suggest an effective, reliable, and bio-friendly photocatalytic candidate for a variety of water treatment applications.
Rocznik
Strony
135--146
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, College of Engineering, University of Baghdad, Iraq
  • Department of Environmental Engineering, College of Engineering, University of Baghdad, Iraq
Bibliografia
  • 1. Abass, I. S., & Alwared, A. I. (2024). Bio-synthesis and photocatalytic activity of zinc oxide nanoparticles for sulfosulfuron herbicide degradation from aqueous solutions. Journal of Ecological Engineering, 25(12), 181–193. https://doi.org/10.12911/22998993/194177
  • 2. Abdulrazaq, H. A., Alwared, A. I., & Onyeaka, H. (2023). Ibuprofen degradation from synthetic wastewater using photo-Fenton process. Iraqi Journal of Chemical and Petroleum Engineering, 24(4), 107–114. https://doi.org/10.31699/ijcpe.2023.4.11
  • 3. Akhtar, M. S., Panwar, J., & Yun, Y. S. (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry and Engineering, 1(6), 591–602. https://doi.org/10.1021/sc300118u
  • 4. Al-Musawi, T. J., Mengelizadeh, N., Alwared, A. I., Balarak, D., & Sabaghi, R. (2023). Photocatalytic degradation of ciprofloxacin by MMT/CuFe2O4 nanocomposite: characteristics, response surface methodology, and toxicity analyses. Environmental Science and Pollution Research, 30(27), 70076–70093. https://doi.org/10.1007/s11356-023-27277-7
  • 5. Ali, A. H., & Alwared, A. I. (2024a). Construction of ternary heterostructure of zeolite/Fe3O4/CuS/CuWO4 as a reusable: Characterization studies. Asia-Pacific Journal of Chemical Engineering, 19(5), e3125. https://doi.org/10.1002/apj.3125
  • 6. Ali, A. H., & Alwared, A. I. (2024b). Photocatalytic continuous degradation of pharmaceutical pollutants by zeolite/Fe3O4/CuS/CuWO4 nanocomposite under direct sunlight. Results in Engineering, 24, 103234. https://doi.org/10.1016/j.rineng.2024.103234
  • 7. Ali, Q. A., Shaban, M. A. A., Mohammed, S. J., M-Ridha, M. J., Abd-Almohi, H. H., Abed, K. M., Salleh, M. Z. M., & Hasan, H. A. (2023). Date palm fibre waste exploitation for the adsorption of congo red dye via batch and continuous modes. Journal of Ecological Engineering, 24(10), 259–276. https://doi.org/10.12911/22998993/169176.
  • 8. Alwared A. I., Mohammed N. A., Al-Musawi T. J. and Mohammed A. A. (2023a), Solar-induced photocatalytic degradation of reactive red and turquoise dyes using a titanium oxide/xanthan gum composite, Sustainability, 15(14), 10815; https://doi.org/10.3390/su151410815
  • 9. Alwared, A. I., Sulaiman, F. A., Raad, H., Al-Musawi, T. J., & Mohammed, N. A. (2023b). Ability of FeNi3/SiO2/TiO2 nanocomposite to degrade amoxicillin in wastewater samples in solar light-driven processes. South African Journal of Botany, 153, 195–202. https://doi.org/10.1016/j.sajb.2022.12.031
  • 10. Aravind, M., Ahmad, A., Ahmad, I., Amalanathan, M., Naseem, K., Mary, S. M. M., Parvathiraja, C., Hussain, S., Algarni, T. S., Pervaiz, M., & Zuber, M. (2021). Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. Journal of Environmental Chemical Engineering, 9(1), 104877. https://doi.org/10.1016/j.jece.2020.104877
  • 11. Donkadokula, N. Y., Kola, A. K., Naz, I., & Saroj, D. (2020). A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Reviews in Environmental Science and Biotechnology, 19(3), 543–560. https://doi.org/10.1007/s11157-020-09543-z
  • 12. Feng, P., Zhou, Q. L., Guan, X. H., & Zhou, G. M. (2014). Preliminary study on the effect of zero valent iron enhanced by weak magnetic field on the AZO dyes decoloration in the water. Sichuan Environ, 33(4), 1–6.
  • 13. Haider, F. A., & Alwared, A. I. (2023). Solar photocatalytic degradation of metronidazole antibiotic by bio-synthesis Tio2 from aqueous solution: Effect of solar intensity and Ph. Ann. For. Res, 66(1), 4081–4093. www.e-afr.org
  • 14. Hemlata, Meena, P. R., Singh, A. P., & Tejavath, K. K. (2020). Biosynthesis of silver nanoparticles using cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega, 5(10), 5520–5528. https://doi.org/10.1021/acsomega.0c00155
  • 15. Kadam, A., Dhabbe, R., Gophane, A., Sathe, T., & Garadkar, K. (2016). Template free synthesis of ZnO/Ag2O nanocomposites as a highly efficient visible active photocatalyst for detoxification of methyl orange. Journal of Photochemistry and Photobiology B: Biology, 154, 24–33. https://doi.org/10.1016/j.jphotobiol.2015.11.007
  • 16. Kazlagić, A., Abud, O. A., Ćibo, M., Hamidović, S., Borovac, B., & Omanović-Mikličanin, E. (2020). Green synthesis of silver nanoparticles using apple extract and its antimicrobial properties. Health and Technology, 10(1), 147–150. https://doi.org/10.1007/s12553-019-00378-5
  • 17. Kumar, B., Smita, K., & Cumbal, L. (2016). Biosynthesis of silver nanoparticles using Lantana camara flower extract and its application. Journal of Sol-Gel Science and Technology, 78(2), 285–292. https://doi.org/10.1007/s10971-015-3941-8
  • 18. Manik, U. P., Nande, A., Raut, S., & Dhoble, S. J. (2020). Green synthesis of silver nanoparticles using plant leaf extraction of Artocarpus heterophylus and Azadirachta indica. Results in Materials, 6, 100086. https://doi.org/10.1016/j.rinma.2020.100086
  • 19. Mohammed, N. A. A., I. Alwared, A., & S. Salman, M. (2020). Decolorization of Reactive Yellow Dye by Advanced Oxidation Using Continuous Reactors. Iraqi Journal of Chemical and Petroleum Engineering, 21(2), 1–6. https://doi.org/10.31699/ijcpe.2020.2.1
  • 20. Mohammed, N. A., Alwared, A. I., Shakhir, K. S., & Sulaiman, F. A. (2024). Synthesis, characterization of FeNi3@SiO2@CuS for enhance solar photocatalytic degradation of atrazine herbicides: Application of RSM. Results in Surfaces and Interfaces, 16, 100253. https://doi.org/10.1016/j.rsurfi.2024.100253
  • 21. Momin, B., Rahman, S., Jha, N., & Annapure, U. S. (2019). Valorization of mutant Bacillus licheniformis M09 supernatant for green synthesis of silver nanoparticles: photocatalytic dye degradation, antibacterial activity, and cytotoxicity. Bioprocess and Biosystems Engineering, 42(4), 541–553. https://doi.org/10.1007/s00449-018-2057-2
  • 22. Okab, A A, and Alwared A I, 2023. A dual S-scheme g-C3N4/Fe3O4/Bi2WO6/Bi2S3 heterojunction for improved photocatalytic decomposition of methylene blue: Proposed mechanism, and stability studies, Materials Science in Semiconductor Processing, 153, (2023), 107196.
  • 23. Raghad, N. M., & Abeer, I. A. (2023). Adsorption of methylene blue from aqueous solution using free and immobilized Algae Cells. Iraqi Journal of Agricultural Sciences, 54(5), 1387–1397. https://doi.org/10.36103/ijas.v54i5.1839
  • 24. Rasouli J, Binazadeh M, and Sabbaghi S. (2024). Synthesis of a novel biomass waste- based photocatalyst for degradation of high concentration organic pollutants under visible light: Optimization of synthesis condition and operational parameters via RSM-CCD, Surfaces and Interfaces, 49, 104400.
  • 25. Roy, K., Sarkar, C. K., & Ghosh, C. K. (2015). Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 146, 286–291.
  • 26. Sarkar, S., Banerjee, A., Chakraborty, N., Soren, K., Chakraborty, P., & Bandopadhyay, R. (2020). Structural-functional analyses of textile dye degrading azoreductase, laccase and peroxidase: A comparative in silico study. Electronic Journal of Biotechnology, 43, 48–54. https://doi.org/10.1016/j.ejbt.2019.12.004
  • 27. Singh, J., & Dhaliwal, A. S. (2020). Plasmon-induced photocatalytic degradation of methylene blue dye using biosynthesized silver nanoparticles as photocatalyst. Environmental Technology (United Kingdom), 41(12), 1520–1534. https://doi.org/10.1080/09593330.2018.1540663
  • 28. Singh, R. L., Singh, P. K., & Singh, R. P. (2015). Enzymatic decolorization and degradation of azo dyes - A review. International Biodeterioration and Biodegradation, 104, 21–31. https://doi.org/10.1016/j.ibiod.2015.04.027
  • 29. Sinha, A., Lulu, S., Vino, S., Banerjee, S., Acharjee, S., & Jabez Osborne, W. (2018). Degradation of reactive green dye and textile effluent by Candida sp. VITJASS isolated from wetland paddy rhizosphere soil. Journal of Environmental Chemical Engineering, 6(4), 5150–5159. https://doi.org/10.1016/j.jece.2018.08.004
  • 30. Wang, Y., Bi, N., Zhang, H., Tian, W., Zhang, T., Wu, P., & Jiang, W. (2020). Visible-light-driven photocatalysis-assisted adsorption of azo dyes using Ag2O. In Colloids and Surfaces A: Physicochemical and Engineering Aspects. Physicochemical and Engineering Aspects, 585, p. https://doi.org/10.1016/j.colsurfa.2019.124105
  • 31. Yong, X., & Schoonen, M. A. A. (2000). The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85(3–4), 543–556. https://doi.org/10.2138/am-2000-0416
  • 32. Zhu, C., Guo, S., Fang, Y., & Dong, S. (2010). Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 4(4), 2429–2437. https://doi.org/10.1021/nn1002387
  • 33. Narayanan, K.B. and Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in colloid and interface science, 156(1–2): 1–13.
  • 34. Jalill, A., Raghad, D.H., Nuaman, R.S. and Abd, A.N. (2016). Biological synthesis of Titanium Dioxide nanoparticles by Curcuma longa plant extract and study its biological properties. World Scientific News, 49(2): 204–222.
  • 35. Parveene, K., Banse, V. and Ledwani, L. (2016), April. Green synthesis of nanoparticles: their advantages and disadvantages. In AIP conference proceedings 1724(1), 020048. AIP Publishing LLC
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb2bf65d-0523-4b1d-85eb-760d41b7be4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.