PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface Morphology of Polyimide Thin Film Dip-Coated on Polyester Filament for Dielectric Layer in Fibrous Organic Field Effect Transistor

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The idea of wearable electronics automatically leads to the concept of integrating electronic functions on textile substrates. Since this substrate type implies certain challenges in comparison with their rigid electronic companions, it is of utmost importance to investigate the application of materials for generating the electronic functions on the textile substrate. Only when interaction of materials and textile substrate is fully understood, the electronic function can be generated on the textile without changing the textile’s properties, being flexible or stretchable. This research deals with the optimization of the dielectric layer in a fibrous organic field effect transistor (OFET). A transistor can act as an electrical switch in a circuit. In this work, the polyimide layer was dip-coated on a copper-coated polyester filament. After thoroughly investigating the process conditions, best results with minimal thickness and roughness at full insulation could be achieved at a dip-coating speed of 50 mm/min. The polyimide solution was optimal at 15w% and the choice for the solvent NMP was made. In this paper, details on the pre-treatment methods, choice of solvent and dip-coating speed and their effect on layer morphology and thickness, electrical properties and roughness are reported. Results show that the use of polyimide as a dielectric layer in the architecture of a fibrous OFET is promising. Further research deals with the application of the semiconductor layer within the mentioned architecture, to finally build an OFET on a filament for application in smart textiles.
Rocznik
Strony
152--160
Opis fizyczny
Bibliogr. 31. poz.
Twórcy
autor
  • Ghent University - Department of Textiles, Ghent, Belgium, Technologiepark 907, 9052 Zwijnaarde, tel +32 9 264 54 06, fax +32 9 264 58 31
autor
  • Ghent University - Department of Inorganic and Physical Chemistry, Ghent, Belgium, Krijgslaan 281 S3, 9000 Ghent, tel. +32 9 264 44 47, fax +32 9 264 49 83
  • Ghent University - Department of Inorganic and Physical Chemistry, Ghent, Belgium, Krijgslaan 281 S3, 9000 Ghent, tel. +32 9 264 44 47, fax +32 9 264 49 83
  • Ghent University - Department of Textiles, Ghent, Belgium, Technologiepark 907, 9052 Zwijnaarde
Bibliografia
  • 1. Maccioni, M., et al., Towards the textile transistor: Assembly and characterization of an organic field effect transistor with a cylindrical geometry. Applied Physics Letters, 2006. 89(14).
  • 2. Van Genabet, B., Synthesis and characterisation of copper, polyimide and TIPS-pentacene layers in the development of a solution processed fibrous transistor, in Master Thesis Universiteit Gent2010, Universiteit Gent: Gent.
  • 3. Cardoen, J., Ontwikkeling van transistor vezels, in Master Thesis Universiteit Gent2007.
  • 4. PlasticElectronics, SYSTEX D5 5 VISION PAPER 2011.
  • 5. Cherenack, K. and L. van Pieterson, Smart textiles: Challenges and opportunities. Journal of Applied Physics, 2012. 112(9).
  • 6. Marculescu, D., et al., Electronic textiles: A platform for pervasive computing. Proceedings of the Ieee, 2003. 91(12): p. 1995-2018.
  • 7. Marculescu, D., et al., Challenges and opportunities in electronic textiles modeling and optimization, in 39th Design Automation Conference, Proceedings 20022002. p. 175-180.
  • 8. Wagner, H.D., E. Wiesel, and H.E. Gallis, SPREADING OF LIQUID DROPLETS ON CYLINDRICAL SURFACES - ACCURATE DETERMINATION OF CONTACT-ANGLE. Interfaces in Composites, ed. C.G. Pantano and E.J.H. Chen. Vol. 170. 1990. 141-145.
  • 9. Schwarz, A., et al., Steps Towards a Textile-Based Transistor: Development of the Gate and Insulating Layer. Textile Research Journal, 2010. 80(16): p. 1738-1746.
  • 10. Feili, D., et al., Flexible organic field effect transistors for biomedical microimplants using polyimide and parylene C as substrate and insulator layers. Journal of Micromechanics and Microengineering, 2006. 16(8): p. 1555-1561.
  • 11. UGent, Why Textiles? – Benefits of Textiles. Smart Textiles Salon Vol.3, 2013. 3.
  • 12. Min, H.G., et al., Behavior of pentacene molecules deposited onto roughness-controlled polymer dielectrics films and its effect on FET performance. Synthetic Metals, 2013. 163: p. 7-12.
  • 13. Shi, W.W., et al., Progress of the improved mobilities of organic field-effect transistors based on dielectric surface modification. Acta Physica Sinica, 2012. 61(22).
  • 14. Iazykov, M., et al., Atomic force microscopy analysis of morphology of thin pentacene films deposited on parylene-C and benzocyclobutene. Surface Science, 2013. 607: p. 170-173.
  • 15. PROETex, D8.1 Report on fibre design for different electronic functions (transistors, sensors), 2007.
  • 16. Bormashenko, E., et al., Mesoscopic and submicroscopic patterning in thin polymer films: Impact of the solvent. Materials Letters, 2005. 59(19-20): p. 2461-2464.
  • 17. Arfsten, N.J., et al., Investigations on the angle-dependent dip coating technique (ADDC) for the production of optical filters. Journal of Sol-Gel Science and Technology, 1997. 8(1-3): p. 1099-1104.
  • 18. Kim, J.H., et al., Phase behavior and mechanism of membrane formation for polyimide/DMSO/water system. Journal of Membrane Science, 2001. 187(1-2): p. 47-55.
  • 19. Guo, M.C. and X.G. Wang, SYNTHESIS AND CHARACTERIZATION OF POLYIMIDE WITH MAINAUTEXCHAIN PHOTOSENSITIVE GROUPS AND HYDROXYL SIDE-GROUPS. Acta Polymerica Sinica, 2008(11): p. 1113-1117.
  • 20. Ren, H.F., et al., Polyimide containing isosorbide units: Synthesis and characterization. Acta Polymerica Sinica, 2006(2): p. 248-252.
  • 21. Van Genabet, B., et al., Synthesis and characterization of copper, polyimide and TIPS-pentacene layers for the development of a solution processed fibrous transistor. Aip Advances, 2011. 1(4).
  • 22. DuPont. Kapton® polyimide film. 2012 cited 2013 19.07. - 14:31.; Available from: http://www2.dupont.com/Kapton/ en_US/.
  • 23. AlfaAesar, Product Bulletin, Stock #43656. 2013: p. 1.
  • 24. Schwarz, A., Analysis of wetting behaviour of an inclined fibre, 2005, Kaunas University of Technology: Kaunas.
  • 25. Warmoeskerken, M., Advanced and specialised textile processing, 2008, Univeristy of Twente: Twente, NL.
  • 26. Bouyer, D., et al., Morphological properties of membranes fabricated by VIPS process using PEI/NMP/water system: SEM analysis and mass transfer modelling. Journal of Membrane Science, 2010. 349(1-2): p. 97-112.
  • 27. Menut, P., et al., Structure formation of poly (ether-imide) films using non-solvent vapor induced phase separation: relationship between mass transfer and relative humidity. Desalination, 2002. 145(1-3): p. 11-16.
  • 28. Yong-Hoon, K., et al., Influence of solvent on the film morphology, crystallinity and electrical characteristics of triisopropylsilyl pentacene OTFTs. Journal of the Electrochemical Society, 2007. 154(12): p. H995-H998.
  • 29. Kim, J., et al., All-solution-processed bottom-gate organic thin-film transistor with improved subthreshold behaviour using functionalized pentacene active layer. Journal of Physics D-Applied Physics, 2009. 42(11).
  • 30. Choi, M.H., et al., Effect of active layer thickness on environmental stability of printed thin-film transistor. Organic Electronics, 2009. 10(3): p. 421-425.
  • 31. Someya, T., et al., A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proceedings of the National Academy of Sciences of the United
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb2401f3-5d92-4689-a9cb-f08ef7936a4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.