PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polymer Binder BioCo3 with Silicates and its Application to Microwave-Cured Moulding Sand

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of silica additive (Poraver) on selected properties of BioCo3 binder in form of an aqueous poly(sodium acrylate) and dextrin (PAANa/D) binder were determined. Based on the results of the thermoanalytical studies (TG-DTG, FTIR, Py-GC/MS), it was found that the silica additive results in the increase of the thermostability of the BioCo3 binder and its contribution does not affect the increase in the level of emissions of organic destruction products. Compounds from group of aromatic hydrocarbons are only generated in the third set temperature range (420-838°C). The addition of silicate into the moulding sand with BioCo3 causes also the formation of a hydrogen bonds network with its share in the microwave radiation field and they are mainly responsible for maintaining the cross-linked structures in the mineral matrix system. As a consequence, the microwave curing process in the presence of Poraver leads to improved strength properties of the moulding sand […]. The addition of Poraver's silica to moulding sand did not alter the permeability of the moulding sand samples, and consequently reduced their friability. Microstructure investigations (SEM) of microwave-cured samples have confirmed that heterogeneous sand grains are bonded to one another through a binder film (bridges).
Rocznik
Strony
51--60
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Krakow, Poland
Bibliografia
  • [1] Fox, J.T., Cannon, F.S., Brown, N.R., Huang, H. & Furness, J.C. (2012). Comparison of a new, green foundry binder with conventional foundry binders. International Journal of Adhesion and Adhesives. 34, 38-45. DOI:10.1016/ j.ijadhadh.2011.11.011.
  • [2] Yu, W., He, H., Cheng, N., Gan, B. & Li, X. (2009). Preparation and experiments for a novel kind of foundry core binder made from modified potato starch. Materials and Design. 30(1), 210-213. DOI:10.1016/j.matdes.2008.03.017.
  • [3] Miguel, R.E., Ippolito, J.A., Leytem, A.B., Porta, A.A., Banda Noriega, R.B. & Dungan, R.S. (2012). Analysis of total metals in waste molding and core sands from ferrous and non-ferrous foundries. Journal of Environmental Management. 110, 77-81. DOI:10.1016/j.jenvman. 2012.05.025.
  • [4] Nwaogu, U.C. & Tiedje, N.S. (2011). Foundry Coating Technology: A Review. Materials Sciences and Applications. 2(8), 1143-1160. DOI:10.4236/msa. 2011.28155.
  • [5] Dungan, R.S., Kukier, U. & Lee, B. (2006). Blending foundry sands with soil: Effect on dehydrogenase activity. Science of the Total Environment. 357(1-3), 221-230. DOI:10.1016/j.scitotenv.2005.04.032.
  • [6] Fayomi, O.S.I., Abdulwahab, M. & Popoola, A.P.I. (2014). Potentials of Elaeis guineensis and Pinus sylvestris as binders on foundry core strength. Journal of Scientific and Industrial Research. 73(3), 173-176. DOI:10.5897/ IJPS12.347.
  • [7] Patterson, M.A. & Thiel, J. (2011). Replacement of Phenol-Formaldehyde in Urethane Binders. Transactions of American Foundry Society. 119(11-117), 331-338.
  • [8] Eastman, J. (2000). Protein-Based Update: Performance Put to the Test. Modern Casting. 10, 32-34.
  • [9] Giese, S.R., Thiel, G., Herried, R.M. & Eastman, J.D. (2001). GMBONDTM Process: An Environmentally Friendly Sand Binder System. DOI:10.4271/2001-01-0344.
  • [10] Spychaj, T., Zdanowicz, M., Kujawa, J. & Schmidt B. (2013). Carboxymethyl starch with high degree of substitution: synthesis, properties and application. Polimery. 58(7-8), 501-630.
  • [11] Manas, C. & Salil, R. (2008). Industrial Polymers, Specialty Polymers and Their Applications. CRC Press Taylor&Francis Group.
  • [12] Zhou, X., Yang, J., Su, D. & Qu, G. (2009). The high-temperature resistant mechanism of α-starch composite binder for foundry. Journal of Materials Processing Technology. 209(14), 5394-5398. DOI:10.1016/j.jmatprotec. 2009.04.010.
  • [13] Zhou, X., Yang, J. & Qu, G. (2007). Study on synthesis and properties of modified starch binder for foundry. Journal of Materials Processing Technology. 183(2-3), 407-411. DOI:10.1016/j.jmatprotec.2006.11.001.
  • [14] Zhou, X., Yang, J., Qian, F. & Qu, G. (2010). Synthesis and application of modified starch as a shell-core main adhesive in a foundry. Journal of Applied Polymer Science. 216(5), 2893-2900. DOI:10.1002/app.31781.
  • [15] Stachowicz, M., Opyd, B. & Granat, K. (2015). Comprehensive assessment of polymeric materials for foundry tooling used in microwave field. Archives of Metallurgy and Materials. 60(1), 335-339. DOI:10.1515/amm-2015-0055.
  • [16] Major-Gabryś, K., Grabarczyk, A., Dobosz, S.M. & Jakubski, J. (2016). New Bicomponent Binders for Foundry Moulding Sands Composed of Phenol-Furfuryl Resin and Polycaprolactone. Metalurgija. 55(2), 385-387.
  • [17] Grabowska, B., Holtzer, M., Dańko, R., Górny, M., Bobrowski, A. & Olejnik, E. (2013). New BioCo binders containing biopolymers for foundry industry. Metalurgija. 52(1), 47-50.
  • [18] Grabowska, B., Sitarz, M., Olejnik, E. & Kaczmarska, K. (2015). FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch – Part I. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 135, 529-535. DOI:10.1016/j.saa.2014.07.031.
  • [19] Grabowska, B. (2009). Microwave crosslinking of polyacrylic compositions containing dextrin and their applications as molding sands binders. Polimery/Polymers. 54(7-8), 507-513.
  • [20] Grabowska, B., Sitarz, M., Olejnik, E., Kaczmarska, K. & Tyliszczak, B. (2015). FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch – In moulding sands, Part II. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 151, 27-33. DOI:10.1016/j.saa. 2015.06.084.
  • [21] Grabowska, B. & Holtzer, M. (2007). Application of microwave radiation for crosslinking of sodium polyacrylate/silica gel system used as abinder in foundry sands. Polimery/Polymers. 52(11-12), 841-847.
  • [22] Singh, S., Gupta, D., Jain, V. & Sharma, A. (2014). Microwave Processing of Materials and Applications in Manufacturing Industries: A Review. Materials and Manufacturing Processes. 6914(December 2014), 37-41. DOI:10.1080/10426914.2014.952028.
  • [23] Spychaj, T., Wilpiszewska, K. & Zdanowicz, M. (2013). Medium and high substituted carboxymethyl starch: synthesis, characterization and application. Starch/Stärke. 65(6), 22-33. DOI:10.1002/star.201200159.
  • [24] Li, S.F., Mujyambere, J.M.V. & Liu, M. (2011). Synthesis of carboxymethyl starch with high degree of substitution by a modified dry process. Advanced Materials Research. 233-235, 306-310. DOI:10.4028/www.scientific.net/AMR.233-235.306.
  • [25] Wang, Y., Cannon, F.S., Salama, M., Goudzwaard, J. & Furness, J.C. (2007). Characterization of hydrocarbon emissions from green sand foundry core binders by analytical pyrolysis. Environmental Science and Technology. 41(22), 7922-7927. DOI:10.1021/es071657o.
  • [26] Wang, Y., Cannon, F.S. & Li, X. (2011). Comparative analysis of hazardous air pollutant emissions of casting materials measured in analytical pyrolysis and conventional metal pouring emission tests. Environmental Science & Technology. 45(19), 8529-8535.
  • [27] Grabowska, B., Kaczmarska, K., Bobrowski, A. & Żymankowska-Kumon, S. (2017). TG-DTG-DSC, FTIR, DRIFT, and Py-GC-MS studies of thermal decomposition for poly(sodium acrylate)/dextrin (PAANa/D ) – new binder BioCo3. Journal of Casting & Materials Engineering. 1(1), 27-32.
  • [28] Kaczmarska, K., Żymankowska, A.B.S. & Grabowska, B. (2017). Studies on the Gases Emission under High Temperature Condition from Moulding Sands Bonded by Modified Starch CMS-Na. Archives of Foundry Engineering. 17(1), 79-82.
  • [29] Holzter, M., Dańko, R., Bobrowski, A., Żymankowska-Kumon, S., Kmita, A. & M. K. (2014). Study of the harmfulness of molding and core sands with resins at high temperatures. Cracow: AKAPIT.
  • [30] Dańko, R., Jezierski, J. & Holtzer, M. (2016). Physical and chemical characteristics of after-reclamation dust from used sand moulds. Arabian Journal of Geosciences. 9(2), 1-8. DOI:10.1007/s12517-015-2162-3.
  • [31] Acharya, S.G., Vadher, J.A. & Kanjariya, P. V. (2016). Identification and Quantification of Gases Releasing from Furan No Bake Binder. Archives of Foundry Engineering, 16(3), 5-10. DOI:10.1515/afe-2016-0039.
  • [32] Łucarz, M. (2015). Setting Temperature for Thermal Reclamation of Used Moulding Sands on the Basis of Thermal Analysis. Metalurgija. 54(2), 319-322.
  • [33] Stachowicz, M. & Granat, K. (2014). Possibilities of Reclamation Microwave-Hardened Molding Sands with Water Glass. Archives of Metallurgy and Materials. 59(2), 28-31. DOI:10.2478/amm-2014-0127.
  • [34] Lewandowski J.L. (1997). Molds for foundry molds. WN AKAPIT. (in Polish).
  • [35] McNeill, I.C. & Sadeghi, S.M.T. (1990). Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts: Part 1—Poly(acrylic acid). Polymer Degradation and Stability. 29(2), 233-246. DOI:10.1016/0141-3910(90) 90034-5.
  • [36] Liu, X., Ma, H., Yu, L., Chen, L., Tong, Z. & Chen, P. (2014). Thermal-oxidative degradation of high-amylose corn starch. Journal of Thermal Analysis and Calorimetry. 115(1), 659-665. DOI:10.1007/s10973-013-3354-2.
  • [37] Miguel, R.E., Dungan, R.S. & Reeves, J.B. (2014). Mid-infrared spectroscopic analysis of chemically bound metalcasting sands. Journal of Analytical and Applied Pyrolysis. 107, 332-335. DOI:10.1016/j.jaap.2014.02.007.
  • [38] Vermöhlen, K., Lewandowski, H., Narres, H.-D. & Koglin, E. (2000). Adsorption of polyacrylic acid on aluminium oxide: DRIFT spectroscopy and ab initio calculations. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 170(2-3), 181-189. DOI:10.1016/S0927-7757(00)00408-8.
  • [39] Young, A.M., Sherpa, A., Pearson, G., Schottlander, B. & Waters D.N. (2000). Use of Raman spectroscopy in the characterisation of the acid-base reaction in glass-ionomer cements. Biomaterials. 21(19), 1971-1979. DOI:10.1016/ S0142-9612(00)00081-8.
  • [40] Rath, R.K., Subramanian, S. & Pradeep, T. (2000). Surface chemical studies on pyrite in the presence of polysaccharide-based flotation depressants. Journal of Colloid and Interface Science. 229(1), 82-91. DOI:10.1006/jcis.2000.6990.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb1a44ac-9271-488f-9f51-d293a10165ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.