PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vision system supporting the pilot in variable light conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Układ wizyjny wspomagający pilota w warunkach zmiennego oświetlenia
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to demonstrate the applicability of contemporary optoelectronic systems supported by image processing algorithms in aviation. Optoelectronic systems can support the pilot’s work or the work of an Unmanned Aerial Vehicle (UAV) operator after being installed in the cockpit of the pilot or in a ground station. The origin of the problem is related to the aspects of safe operation of the aircraft in the conditions of dynamically changing ambient light observed by the aircraft pilot or operator monitoring the monitor at the ground station and observing the image from the camera installed on the UAV. The proposed solution is to help avoid situations in which the pilot’s/operator’s situational awareness deteriorates due to strong optical phenomena.
PL
Celem niniejszego opracowania jest zademonstrowanie możliwości zastosowania współczesnych układów optoelektronicznych wspomaganych przez algorytmy przetwarzania obrazu w lotnictwie. Układy optoelektroniczne mogą wspomóc pracę pilota lub pracę operatora bezzałogowego statku powietrznego (BSP) po zainstalowaniu w kabinie pilota bądź w stacji naziemnej. Geneza problemu jest związania z aspektami bezpiecznej eksploatacji statku powietrznego w warunkach dynamicznie zmieniającego się oświetlenia otoczenia obserwowanego przez pilota samolotu lub operatora śledzącego monitor w stacji naziemnej i obserwującego obraz z kamery zainstalowanej na BSP. Zaproponowane rozwiązanie ma pomóc uniknąć sytuacji, w których świadomość sytuacyjna pilota/operatora pogarsza się na skutek silnych zjawisk optycznych.
Rocznik
Strony
60--67
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Abramov A, Bayer C, Heller C. A flexible modeling approach for robust multi-lane road estimation, IEEE Intelligent Vehicles Symposium (IV), 10.1109/IVS.2017.7995904, Los Angeles, CA, 2017, https://doi.org/10.1109/IVS.2017.7995904.
  • 2. Aircraft Spruce, http://www.aircraftspruce.com/catalog/graphics/notinuse/RV-10Rosen_B.jpg, access: 2018.07.19.
  • 3. Akopdjanan Y, Machikhin A, Bilanchuk V, Drynkin V, Falkov E, Tsareva T, Fomenko A. Flight study of on-board enhanced vision system for all-weather aircraft landing, 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics 2014; 9292: 92920X.
  • 4. Arthur J, Kramer L, Bailey R. Flight test comparison between enhanced vision (FLIR) and synthetic vision systems. Enhanced and Synthetic Vision 2005; 5802: 25-37, https://doi.org/10.1117/12.604363.
  • 5. Basmadji F, Gruszecki J, Kordos D, Rzucidlo P. Development of ground station for a terrain observer-hardware in the loop simulations. AIAA Modeling and Simulation Technologies Conference 2012; 4629, https://doi.org/10.2514/6.2012-4629.
  • 6. Basmadji F, Gruszecki J, Rzucidlo P. Prediction, Analysis and Modeling of Human Performance. Digital Human Modeling for Design and Engineering Conference and Exhibition, Gothenburg - Sweden 2009; SAE Technical Paper 2009-01-2297.
  • 7. Beier K. Gemperlein H. Simulation of infrared detection range at fog conditions for Enhanced Vision Systems in civil aviation. Aerospace Science and Technology 2004; 8(1): 63-71, https://doi.org/10.1016/j.ast.2003.09.002.
  • 8. Boden F, et al. Editorial for the special feature on Advanced In-flight Measurement Techniques AIM2. Measurement Science and Technology 2017; 28.4: 040101.
  • 9. Cernasov N. Automatic glare reduction system for vehicles. Patent application US20090204291A1 2009.
  • 10. Cieciński P, Pieniążek J, Rzucidło P., TomczykA. Modyfikacja charakterystyk systemu pośredniego sterowania samolotem z wykorzystaniem interfejsów człowiek-maszyna, Sieć Naukowa Aeronautica Integra. Journal of Aeronautica Integra 2008; 2(4): 29-36.
  • 11. Engerstrom L, Samuelsson A. Exploring sun visor concepts, Department of Technology Management and Economics Division of Entrepreneurship and Strategy. Chalmers University of Technology. Gothenburg, Sweden 2016; Report No. E 2016:102
  • 12. Foyle D, Ahumada A, Larimer J, Sweet B. Enhanced/Synthetic Vision Systems: Human Factors Research and Implications for Future Systems, 1992; SAE Technical Paper 921968, https://doi.org/10.4271/921968.
  • 13. Gruszecki J. [red] Wybrane zagadnienia awioniki, Kijor K., Rzucidło P., Szpunar R., Integracja systemów syntetycznej i wzmocnionej wizji, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2011, 61-70.
  • 14. Gruszecki J, Rogalski T, Nowak D. Precision of Pilotage as a Function of Pilot Information Workload. AIAA Modeling and Simulation Technologies Conference, Minneapolis 2012; AIAA-2012-4492, https://doi.org/10.2514/6.2012-4492.
  • 15. Gruszecki J, Rzucidło P. Simplified Informatics Model of Pilot-Operator and Prediction of Human Performance. AIAA Modeling and Simulation Technologies Conference and Exhibit, Honolulu, Hawaii 2008; AIAA-2008-7110.
  • 16. Gruszecki J, Tomczyk A, Rzucidło P, Dołęga B, Kopecki G, Pieniążek J, Rogalski T. Opracowanie technologii oraz stanowiska do optymalizacji interfejsu człowiek-maszyna w kokpitach wojskowych statków powietrznych. Wydawnictwo Instytutu Technicznego Wojsk Lotniczych, Warszawa 2007.
  • 17. Hines G, Rahman Z, Jobson D, Woodell G, Harrah S, Real-time enhanced vision system, Proc. SPIE 5802, Enhanced and Synthetic Vision, 2005, https://doi.org/10.1117/12.603656.
  • 18. Kashyap S K, Naidu V P S, & Shanthakumar N. Development of Data Acquisition Systems for EVS Flight Experiments, Control and Data Fusion e-Journal: CADFEJL 2017; 1 (1): 31-36.
  • 19. Kim J, Shin H. Algorithm & SoC Design for Automotive Vision Systems, Springer Netherlands, 2014, https://doi.org/10.1007/978-94-017-9075-8.
  • 20. Kopecki G, Rzucidlo P. Integration of optical measurement methods with flight parameter measurement systems, Measurement Science and Technology, 2016; 27(5): 054003, https://doi.org/10.1088/0957-0233/27/5/054003. 21. Kucaba-Pietal A, Stasicki P, Politz Ch, Roloff Ch, Boden F, Jentink H, de Grot K,Szumski M, Valla M, Póltora P, Szczerba P, James S, Kirmse T, Weikert T. AIM2 Advanced Flight Testing Work-shop. Norderstedt: BOD, 2013.
  • 22. Maier M, Moisel J, Herold F. Multibeam Headlights in the Mercedes-Benz CLS-Class. ATZworldwide 2015; 117(2): 4–9, https://doi. org/10.1007/s38311-015-0156-0.
  • 23. Moisel J, Ackermann R, Griesinger M. Adaptive Headlights Utilizing LED Arrays. Proceedings of the Int. Symposium on Automotive Lighting (ISAL) Darmstadt, 2009; 287–296.
  • 24. Naidu V, Rao N, Girija G. Enhanced and Synthetic Vision for Remotely Piloted Vehicles, 2011.
  • 25. Naidu V P S, Rao P N, Kashyap S K, Shanthakumar N, & Girija G. Experimental study with enhanced vision system prototype unit. In Image Information Processing (ICIIP), 2011 International Conference on (pp. 1-5). IEEE.
  • 26. Nakagawara V, Wood K, Montgomery R. Laser exposure incidents: pilot ocular health and aviation safety issues. Optometry-Journal of the American Optometric Association 2008; 79(9): 518-524, https://doi.org/10.1016/j.optm.2007.08.022.
  • 27. Oszust M, Kapuscinski T, Warchol D, Wysocki M, Rogalski T, Pieniążek J, Kopecki G, Cieciński P, Rzucidlo P. A vision-based method for supporting autonomous aircraft landing, Aircraft Engineering and Aerospace Technology, DOI: AEAT-11-2017-0250 (accepted for publication).
  • 28. Pencikowski P, Low-cost vehicle-mounted enhanced vision system comprised of a laser illuminator and range-gated camera. Enhanced and Synthetic Vision 1996; 2736, https://doi.org/10.1117/12.241036.
  • 29. Pieniążek J. Adaptation of the display dynamics for monitoring of controlled dynamical processes. Human System Interactions (HSI), 3rd International Conference on Human System Interaction, Rzeszów 2010, https://doi.org/10.1109/HSI.2010.5514493.
  • 30. Pieniążek J. Kształtowanie współpracy człowieka z lotniczymi systemami sterowania, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2014.
  • 31. PKBWL Raport wstępny o wypadku (poważnym incydencie) lotniczym 338/14, Katowice 2014.
  • 32. Polak G. Operational and technological directions for Unmanned Aircraft Systems development. Security and Defence Quarterly 2018; 1(18): 57-74, https://doi.org/10.5604/01.3001.0011.8327.
  • 33. Politz C, Lawson N J, Konrath R, Agocs J, & Schröder A. Development of Particle Image Velocimetry for In-Flight Flow Measurement. In Advanced In-Flight Measurement Techniques 2013: 269-289, https://doi.org/10.1007/978-3-642-34738-2_16.
  • 34. RAM Universal Sun Visor with Suction Cup Mount, http://www.mypilotstore.com/mypilotstore/sep/9989, access: 2018.07.19.
  • 35. Rash C, Manning S. For Pilots, sunglasses are Essential in Vision Protection Human Factos & Aviation Medicine 2002; 49(4):1-8.
  • 36. Rash C E, McLean W E, Mozo B T, Licina J R, & McEntire B J. Human factors and performance concerns for the design of helmet-mounted displays. In RTO HFM symposium on current aeromedical issues in rotary wing operation 1999.
  • 37. Reichl M, Intelligente LED-Scheinwerfer für mehr Sicherheit. http://www.photonikforschung.de/service/aktuellenachrichten/detailseite/ archive/2013/05/15/article/intelligente-led-scheinwerfer-fuer-mehr-sicherheit, access: 2018.07.26.
  • 38. Rozporządzenie (WE) nr 1899/2006 Parlamentu Europejskiego i Rady z dnia 12 grudnia 2006 r. zmieniające rozporządzenie Rady (EWG) nr 3922/91 w sprawie harmonizacji wymagań technicznych i procedur administracyjnych w dziedzinie lotnictwa cywilnego.
  • 39. Rzucidło P, Kopecki G H, deGroot K, Kucaba-Pietal A, Smusz R, Szewczyk M, Szumski M. Data acquisition system for PW-6U in flight boundary layer mapping, Aircraft Engineering and Aerospace Technology, 2016; 88(4):572 – 579, https://doi.org/10.1108/AEAT-12-2014-0215.
  • 40. Sánchez-Tena M, Alvarez-Peregrina C, Valbuena-Iglesias M, Palomera P. Optical Illusions and Spatial Disorientation in Aviation Pilots. Journal of medical systems 2018; 42(5): 79, https://doi.org/10.1007/s10916-018-0935-4.
  • 41. Sasim B. Elementy ergonomii kabin samolotów wojskowych, Wydawnictwo Instytutu Technicznego Wojsk Lotniczych, Warszawa 2009
  • 42. Stewart K. Podręcznik pilota szybowcowego – praktyka, Wydanie I, 2015.
  • 43. Szczepański C. Method of Optimizing the Human-Machine Interface at Military Aircraft. AIAA Modeling and Simulation Technologies Conference, Chicago, IL 2009; AIAA-2009-5923, https://doi.org/10.2514/6.2009-5923.
  • 44. Szewczyk M, Smusz R, de Groot K, Meyer J, Kucaba-Pietal A, Rzucidlo P. In-flight investigations of the unsteady behaviour of the boundary layer with infrared thermography. Measurement Science and Technology 2017; 28(4): 044002, https://doi.org/10.1088/1361-6501/aa529c.
  • 45. Tutunea D, Dima A, Bica M, Buculei M. The design of sun visors for automotive industry. Annals of the University of Oradea. Fascile of Management and Technological Engineering 2014; XXIII(XIII): 124-127.
  • 46. Wilson J, Zimmerman K, Schwab D, Oldham M, Stockwell R. U.S. Patent No. 7,525,448. Washington, DC: U.S. Patent and Trademark Office 2009.
  • 47. Yechezkal E. Enhanced vision for driving, Patent No.: US 7,199,767 B2, 2007.
  • 48. Yuter S. Vehicle glare reducing systems, Patent application 20120303214 2012.
  • 49. Zuse K. Fotoelektrisch durch Gegenlicht steuerbare Beleuchtungsvorrichtung. German Patent No. 1190413, 1958.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb1405fe-5cd7-43b9-ab9d-c9d26ed11025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.