PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Engelhard titanosilicate microporous material on photocatalytic performance of cement

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The application of photocatalysts in concrete technology is a well-established concept that carries with it the ability to give benefits to the surrounding environment. Photocatalytic cement is essentially a modified kind of cement added with photocatalytic materials that, when exposed to light radiation, can catalyse chemical reactions with water vapour and air contaminants, resulting in the degradation of these pollutants. The principal use of photocatalytic cement has been investigated for use in construction materials, particularly pavers, tiles, and concrete. The objective of these investigations is to develop surfaces that contribute to the air cleaning by breaking down pollutants. Titanium dioxide is the photocatalyst that is typically employed the most in construction materials. This is owing to titanium dioxide's higher photocatalytic activity, which is higher than that of other metal oxide photocatalysts, as well as its compatibility. In this study, microporous materials, such as Engelhard Titanium Silicalite (ETS), which are alternatives to titanium oxide as a filler, were introduced into a cement matrix, and the photocatalytic activity was analysed. Their performance was designed to be evaluated on site, with the advantage of gathering information under ambient conditions, for the purposes of exploratory or diagnostic study.
Rocznik
Strony
art. no. e186, 2024
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
  • Department of Civil, Energy, Environment and Material Engineering, University Mediterranean of Reggio Calabria, 89124 Reggio Calabria, Italy
  • Department of Civil, Energy, Environment and Material Engineering, University Mediterranean of Reggio Calabria, 89124 Reggio Calabria, Italy
  • TEST Mat & Com del Building Future Lab, Mediterranea University of Reggio Calabria (dArTe), Via Graziella, Loc. Feo di Vito, 89122 Reggio Calabria, Italy
  • TEST Mat & Com del Building Future Lab, Mediterranea University of Reggio Calabria (dArTe), Via Graziella, Loc. Feo di Vito, 89122 Reggio Calabria, Italy
  • Department of Civil, Energy, Environment and Material Engineering, University Mediterranean of Reggio Calabria, 89124 Reggio Calabria, Italy
  • Department of Civil, Energy, Environment and Material Engineering, University Mediterranean of Reggio Calabria, 89124 Reggio Calabria, Italy
Bibliografia
  • 1. Hamdany AH, Satyanaga A, Zhang D, Kim Y, Kim JR. Photo-catalytic cementitious material for ecoefficient construction—asystematic literature review. Appl Sci. 2022. https://doi.org/10.3390/app12178741.
  • 2. Geiker MR, Hendriks MAN, Elsener B. Durability-based design:the European perspective. Sustain Resil Infrastruct. 2021;8:169–84. https://doi.org/10.1080/23789689.2021.1951079.
  • 3. Chen J, Sun Poon C. Photocatalytic construction and building materials: from fundamentals to applications. Build Environ. 2009;44:1899–906. https://doi.org/10.1016/j.buildenv.2009.01.002.
  • 4. Hüsken G, Hunger M, Brouwers HJH. Experimental study of pho-tocatalytic concrete products for air purification. Build Environ.2009;44:2463–74. https://doi.org/10.1016/j.buildenv.2009.04.010.
  • 5. Cros CJ, Terpeluk AL, Burris LE, Crain NE, Corsi RL, JuengerMCG. Effect of weathering and traffic exposure on removal of nitrogen oxides by photocatalytic coatings on roadside concrete structures. Mater Struct. 2015;48:3159–71. https:// doi. org/ 10.1617/s11527-014-0388-2.
  • 6. Haider AJ, Jameel ZN, Al-Hussaini IHM. Review on: titanium dioxide applications. Energy Proc. 2019;157:17–29.
  • 7. Petala A, Panagiotopoulou P. Methanation of CO 2 over alkali-pro-moted Ru/TiO 2 catalysts: I. Effect of alkali additives on catalytic activity and selectivity. Appl Catal B Environ. 2018;224:919–27.https://doi.org/10.1016/j.apcatb.2017.11.048.
  • 8. Frontera P, Malara A, Stelitano S, Fazio E, Neri F, Scarpino L, Antonucci PL, Santangelo S. A new approach to the synthesis of titania nano-powders enriched with very high contents of carbonnano tubes by electro-spinning. Mater Chem Phys. 2015;153:338–45. https://doi.org/10.1016/j.matchemphys.2015.01.023.
  • 9. Frontera P, Malara A, Stelitano S, Leonardi SG, Bonavita A, Fazio E, Antonucci P, Neri G, Neri F, Santangelo S. Characterisation and H 2 O 2 sensing properties of TiO 2 -CNTs/Pt electro-catalysts. Mater Chem Phys. 2016. https://doi.org/10.1016/j.matchemphys.2015.12.030.
  • 10. Ângelo J. Development and characterization of titania-based photo catalysts and their incorporation in paint coatings, 2016;1–172.
  • 11. Bersch JD, Masuero AB, Dal Molin DCC. Photocatalytic coloured rendering mortars: effect of TiO 2 and iron oxide pigments on the physical, mechanical, hygric, and photoactive behaviour. Mater Struct. 2023;56:146. https://doi.org/10.1617/s11527-023-02240-7.
  • 12. Folli A, Pade C, Hansen TB, De Marco T, MacPhee DE. TiO 2photocatalysis in cementitious systems: in sights into self-cleaning and depollution chemistry. Cem Concr Res. 2012;42:539–48.https://doi.org/10.1016/j.cemconres.2011.12.001.
  • 13. Park H, Park Y, Kim W, Choi W. Surface modification of TiO 2photocatalyst for environmental applications. J Photochem Photobiol C Photochem Rev. 2013;15:1–20. https://doi.org/10.1016/j.jphotochemrev.2012.10.001.
  • 14. Pei C, Ueda T, Zhu J. Investigation of the effectiveness of graphene/polyvinyl alcohol on the mechanical and electrical properties of cement composites. Mater Struct. 2020;53:66. https://doi.org/10.1617/s11527-020-01508-6.
  • 15. Singh VP, Sandeep K, Kushwaha HS, Powar S, Vaish R. Photo-catalytic, hydrophobic and antimicrobial characteristics of ZnO nano needle embedded cement composites. Constr Build Mater. 2018;158:285–94. https://doi.org/10.1016/j.conbuildmat.2017.10.035.
  • 16. Castelló Lux K, Hot J, Fau P, Bertron A, Kahn ML, Ringot E, Fajerwerg K. Nano-gold decorated ZnO: an alternative photocatalyst promising for NOx degradation. Chem Eng Sci. 2023. https://doi.org/10.1016/j.ces.2022.118377.
  • 17. Loh K, Gaylarde CC, Shirakawa MA. Photocatalytic activity of ZnO and TiO2 ‘nanoparticles’ for use in cement mixes. Constr BuildMater. 2018;167:853–9. https://doi.org/10.1016/j.conbuildmat.2018.02.103.
  • 18. Bica BO, de Melo JVS. Concrete blocks nano-modified with zincoxide (ZnO) for photocatalytic paving: performance comparison with titanium dioxide (TiO2). Constr Build Mater. 2020;252:119120. https://doi.org/10.1016/j.conbuildmat.2020.119120.
  • 19. Luévano-Hipólito E, Martínez-De La Cruz A, López-Cuellar E, YuQL, Brouwers HJH. Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible lightir radiation. Mater Chem Phys. 2014;148:208–13. https://doi.org/10.1016/j.matchemphys.2014.07.034.
  • 20. Nath RK, Zain MFM, Jamil M. An environment-friendly solution for in door air purification by using renewable photocatalysts in concrete: a review. Renew Sustain Energy Rev. 2016;62:1184–94.https://doi.org/10.1016/j.rser.2016.05.018.
  • 21. Pozo-Antonio JS, Dionísio A. Physical-mechanical properties of mortars with addition of TiO2 nanoparticles. Constr Build Mater.2017;148:261–72. https://doi.org/10.1016/j.conbuildmat.2017.05.040.
  • 22. Lucas SS, Ferreira VM, De Aguiar JLB. Incorporation of titanium dioxide nanoparticles in mortars - Influence of microstructure in the hardened state properties and photocatalytic activity. Cem ConcrRes. 2013;43:112–20. https://doi.org/10.1016/j.cemconres.2012.09.007.
  • 23. Ramanathan S, Tuen M, Suraneni P. Influence of supplementary cementitious material and filler fineness on their reactivity in model systems and cementitious pastes. Mater Struct. 2022;55:136. https://doi.org/10.1617/s11527-022-01980-2.
  • 24. Frontera P, Malara A, Mistretta M. Recent trends in sustainability assessment of “Green Concrete.” In: Bevilacqua C, Calabrò F, Della-Spina L, editors. BT - new metropolitan perspectives. Cham:Springer International Publishing; 2021. p. 1402–12.
  • 25. Piccinali A, Diotti A, Plizzari G, Sorlini S. Impact of recycled aggregate on the mechanical and environmental properties of concrete: areview. Materials. 2022. https://doi.org/10.3390/ma15051818.
  • 26. Diotti A, Cominoli L, Plizzari G, Sorlini S. Experimental evaluation of recycled aggregates, washing water and cement sludge recovered from returned concrete. Appl Sci. 2022. https://doi.org/10.3390/app12010036.
  • 27. Graziani G, Sassoni E, Franzoni E. Experimental study on the salt weathering resistance of fired clay bricks consolidated by ethyl silicate. Mater Struct. 2016;49:2525–33. https://doi.org/10.1617/s11527-015-0665-8.
  • 28. Liao G, Yao W, Zuo J. Preparation and characterization of zeolite/TiO2 cement-based composites with excellent photo catalytic performance. Materials. 2018. https://doi.org/10.3390/ma11122485.
  • 29. Li Y, Yu J. Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nat Rev Mater. 2021;6:1156–74. https://doi.org/10.1038/s41578-021-00347-3.
  • 30. Pavel CC, Vuono D, Nastro A, Nagy JB, Bilba N. Synthesis and ion exchange properties of the ETS-4 and ETS-10 microporous crystal-line titano silicates. Stud Surf Sci Catal. 2002;142:295–302. https://doi.org/10.1016/s0167-2991(02)80041-6.
  • 31. Philippou A, Anderson MW. Structural investigation of ETS-4.Zeolites. 1996;16:98–107. https://doi.org/10.1016/0144-2449(95)00107-7.
  • 32. Sousa J, Tavares D, Henriques B, Viana T, Ferreira N. Microporous and Mesoporous Materials Removal of rare-earth elements from aqueous solutions by microporous titano silicate ETS-4. Microporous Mesoporous Mater. 2023;357:112606. https://doi.org/10.1016/j.micromeso.2023.112606.
  • 33. Nguyen VH, Nguyen BS, Huang CW, Le TT, Nguyen CC, Nhi LeTT, Heo D, Ly QV, Trinh QT, Shokouhimehr M, Xia C, Lam SS,Vo DVN, Kim SY, Van Le Q. Photocatalytic NOx abatement: recent advances and emerging trends in the development of photocatalysts. J Clean Prod. 2020;270:121912. https://doi.org/10.1016/j.jclepro.2020.121912.
  • 34. De Luca P, Poulsen TG, Salituro A, Tedeschi A, Vuono D, Kònya Z, Madaràsz D, Nagy JB. Evaluation and comparison of the ammonia adsorption capacity of titano silicates ETS-4 and ETS-10 and alu-minotitano silicates ETAS-4 and ETAS-10. J Therm Anal Calorim.2015;122:1257–67. https://doi.org/10.1007/s10973-015-4922-4.
  • 35. Sugrañez R, Álvarez JI, Cruz-Yusta M, Mármol I, Morales J, VilaJ, Sánchez L. Enhanced photocatalytic degradation of NOx gasesby regulating the microstructure of mortar cement modified with titanium dioxide. Build Environ. 2013;69:55–63. https://doi.org/10.1016/j.buildenv.2013.07.014.
  • 36. Rhimi B, Padervand M, Jouini H, Ghasemi S, Bahnemann DW, Wang C. Recent progress in NOx photocatalytic removal: surface/interface engineering and mechanistic understanding. J Environ Chem Eng. 2022;10: 108566. https://doi.org/10.1016/j.jece.2022.108566.
  • 37. Anderson MW, Terasaki O, Ohsuna T, Malley PJO, Philippou A, MacKay SP, Ferreira A, Rocha J, Lidin S. Microporous titanosilicateETS-10: a structural survey. Philos Mag B. 1995;71:813–41.
  • 38. Frontera P, Miceli M, Mauriello F, De Luca P, Macario A. Investigation on the suitability of engelhard titanium silicate as a support forNi-catalysts in the methanation reaction. Catalysts. 2021;11:1225.
  • 39. Caputo D, Liguori B, Colella C. Some advances in understanding the pozzolanic activity of zeolites: the effect of zeolite structure. Cem Concr Compos. 2008;30:455–62. https://doi.org/10.1016/j.cemconcomp.2007.08.004.
  • 40. Chen JJ, Li LG, Ng PL, Kwan AKH. Effects of superfine zeolite on strength, flowability and cohesiveness of cementitious paste. Cem Concr Compos. 2017;83:101–10. https://doi.org/10.1016/j.cemconcomp.2017.06.010.
  • 41. Girskas G, Skripkiūnas G. The effect of synthetic zeolite on hardened cement paste microstructure and freeze-thaw durability of concrete. Constr Build Mater. 2017;142:117–27. https://doi.org/10.1016/j.conbuildmat.2017.03.056.
  • 42. Gnisci A. Preliminary characterization of hydraulic components of low-temperature calcined marls from the south of Italy. Cem ConcrRes. 2022;161: 106958. https://doi.org/10.1016/j.cemconres.2022.106958.
  • 43. Fine GF, Cavanagh LM, Afonja A, Binions R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors.2010;10:5469–502. https://doi.org/10.3390/s100605469.
  • 44. Pinto ML, Rocha J, Gomes JRB, Pires J. Slow release of NO by microporous titanosilicate ETS-4. J Am Chem Soc. 2011;133:6396–402. https://doi.org/10.1021/ja200663e.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb127978-d9e5-405c-a385-77a01b66b0d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.