PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trajectory planning and motion control schemes for 2DoF planar parallel manipulator Biglide type with elastic joints: A comparative study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Schematy planowania trajektorii i sterowania ruchem dla planarnego manipulatora równoległego 2DoF typu Biglide z elastycznymi przegubami
Języki publikacji
EN
Abstrakty
EN
This research paper develops a nonlinear backstepping sliding mode design scheme for the motion control of two-degree of freedom planar parallel robot. The main objective of this paper is to gain a strong control in trajectory tracking case. However, dynamical equations of motion for a 2DoF parallel manipulator, including structured and unstructured uncertainties, are taken into account. Furthermore, the hybrid control strategy is based on backstepping scheme and on a switching function is that are presented for high accuracy of a mixed space tracking trajectory of robot. Also, the application of control technique in presence of parameter uncertainties in a massive change is studied. In addition, the benefit of this method is that it imposes the intended stability properties by first fixing the Lyapunov candidate functions and then calculating the other functions in a recursive way. Therefore, simulation outcomes are shown so as to assess the tracking performance and to evaluate the total stability of the closed-loop system. Finally, the results accomplished in simulation show the efficiency of the controller proposed for a parallel robot with two degrees of freedom Biglide type with elastic joints.
PL
W artykule opracowano nieliniowy tryb ślizgowy backstepping do sterowania ruchem równoległego robota planarnego 2DoF z elastycznymi przegubami. Badane jest zastosowanie techniki sterowania w obecności niepewności parametrów przy masywnej zmianie. Zaletą proponowanej metody jest to, że narzuca ona zamierzone właściwości stabilności poprzez wcześniejsze ustalenie unkcji Lyapunova. Wyniki uzyskane w symulacji wskazują na skuteczność proponowanego regulatora.
Rocznik
Strony
88--95
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Department of Electrical Engineering, National polytechnic school of Oran, Algeria (ENPO)
autor
  • Department of Electrical Engineering, National polytechnic school of Oran, Algeria (ENPO)
  • Tahri Mohammed, University Bechar, Algeria
  • Department of Electrical Engineering, National polytechnic school of Oran, Algeria (ENPO)
  • University of Oran, Algeria
  • University of Science and Technology of Oran Mohamed-Boudiaf, Oran, Algeria
Bibliografia
  • [1] Kang, B., Chu, J., & Mills, J. K. (2001, May). Design of high speed planar parallel manipulator and multiple simultaneous specification control. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164) (Vol. 3, pp. 2723-2728). IEEE.
  • [2] Kang, B., & Mills, J. K. (2001, October). Dynamic modeling and vibration control of high speed planar parallel manipulator. In Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180) (Vol. 3, pp. 1287-1292). IEEE.
  • [3] Merlet, J. P., &Ravani, B. (Eds.). (2012). Computational Kinematics’ 95: Proceedings of the Second Workshop on Computational Kinematics, Held in Sophia Antipolis, France, September 4–6, 1995 (Vol. 40). Springer Science & Business Media.
  • [4] Tsai, L. W. (1999). Robot analysis: the mechanics of serial and parallel manipulators. John Wiley & Sons.
  • [5] Uchiyama, M. (1993). Structures and characteristics of parallel manipulators. Advanced robotics, 8(6), 545-557.
  • [6] Gough, V. E. (1957). Contribution to discussion of papers on research in automobile stability, control and tyre performance. Proc. of Auto Div. Inst. Mech. Eng., 171, 392-395.
  • [7] Stewart, D. (1965). A platform with six degrees of freedom. Proceedings of the institution of mechanical engineers, 180(1), 371-386.
  • [8] Omran, A., &Elshabasy, M. (2010). A note on the inverse dynamic control of parallel manipulators. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(1), 25-32.
  • [9] Cheng, H., Yiu, Y. K., & Li, Z. (2003). Dynamics and control of redundantly actuated parallel manipulators. IEEE/ASME Transactions on mechatronics, 8(4), 483-491.
  • [10] Hubbard, T., Kujath, M. R., &Fetting, H. (2001, June). Microjoints, actuators, grippers, and mechanisms. In CCToMM Symposium on Mechanisms, Machines and Mechatronics.
  • [11] Weck, M., &Staimer, D. (2002). Parallel kinematic machine tools–current state and future potentials. CIRP Annals, 51(2), 671-683.
  • [12] Vermeiren, L., Dequidt, A., Afroun, M., & Guerra, T. M. (2012). Motion control of planar parallel robot using the fuzzy descriptor system approach. ISA transactions, 51(5), 596-608.
  • [13] Cheung, J. W., & Hung, Y. S. (2005, July). Modelling and control of a 2-DOF planar parallel manipulator for semiconductor packaging systems. In Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. (pp. 717-722). IEEE.
  • [14] Pierrot, F., Krut, S., Baradat, C., &Nabat, V. (2011). Par2: a spatial mechanism for fast planar two-degree-of-freedom pickand-place applications. Meccanica, 46(1), 239-248.
  • [15] Khalil, W., & Ibrahim, O. (2007). General solution for the dynamic modeling of parallel robots. Journal of intelligent and robotic systems, 49(1), 19-37
  • [16] Staicu, S., Liu, X. J., & Wang, J. (2007). Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear Dynamics, 50(1-2), 1-12.
  • [17] Staicu, S. (2009). Recursive modelling in dynamics of Agile Wrist spherical parallel robot. Robotics and Computer Integrated Manufacturing, 25(2), 409-416.
  • [18] Ghorbel, F. H., Chételat, O., Gunawardana, R., &Longchamp, R. (2000). Modeling and set point control of closed-chain mechanisms: Theory and experiment. IEEE Transactions on control systems technology, 8(5), 801-815.
  • [19] Ouyang, P. R., Zhang, W. J., & Wu, F. X. (2002, May). Nonlinear PD control for trajectory tracking with consideration of the design for control methodology. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292) (Vol. 4, pp. 4126-4131). IEEE.
  • [20] Ouyang, P. R., Zhang, W. J., & Gupta, M. M. (2006). An adaptive switching learning control method for trajectory tracking of robot manipulators. Mechatronics, 16(1), 51-61.
  • [21] Le, T. D., Kang, H. J., &Suh, Y. S. (2013). Chattering-free neuro-sliding mode control of 2-DOF planar parallel manipulators. International Journal of Advanced Robotic Systems, 10(1), 22.
  • [22] Piltan, F., Rahmdel, S., Mehrara, S., &Bayat, R. (2012). Sliding mode methodology vs. Computed torque methodology using matlab/simulink and their integration into graduate nonlinear control courses. International Journal of Engineering, 6(3), 142-177.
  • [23] Yang, Z., Wu, J., &Mei, J. (2007). Motor-mechanism dynamic model based neural network optimized computed torque control of a high speed parallel manipulator. Mechatronics, 17(7), 381-390.
  • [24] Zhu, X., Tao, G., Yao, B., & Cao, J. (2009). Integrated direct/indirect adaptive robust posture trajectory tracking control of a parallel manipulator driven by pneumaticmuscles. IEEE Transactions on Control Systems Technology, 17(3), 576-588.
  • [25] Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control (Vol. 199, No. 1). Englewood Cliffs, NJ: Prentice hall.
  • [26] Sadati, N., &Ghadami, R. (2008). Adaptive multi-model sliding mode control of robotic manipulators using soft computing. Neurocomputing, 71(13-15), 2702-2710.
  • [27] Litim, M., Allouche, B., Omari, A., Dequidt, A., &Vermeiren, L. (2014, September). Sliding mode control of biglide planar parallel manipulator. In 2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO) (Vol. 2, pp. 303-310). IEEE.
  • [28] Litim, M., Omari, A., & Larbi, M. E. A. (2015). Control of 2dof Planar Parallel Manipulator Using Backstepping Approach. CONTROL ENGINEERING AND APPLIED INFORMATICS, 17(2), 90-98.
  • [29] Sankaranarayanan, V., &Mahindrakar, A. D. (2009). Control of a class of underactuated mechanical systems using sliding modes. IEEE transactions on robotics, 25(2), 459-467.
  • [30] Geravand, M., &Aghakhani, N. (2010). Fuzzy sliding mode control for applying to active vehicle suspentions. Wseas Transactions on Systems and Control, 5(1), 48-57.
  • [31] Lin, F. J., Chen, S. Y., &Shyu, K. K. (2009). Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system. IEEE Transactions on Neural Networks, 20(6), 938-951.
  • [32] Tan, S. C., Lai, Y. M., & Chi, K. T. (2008). General design issues of sliding-mode controllers in DC–DC converters. IEEE Transactions on Industrial Electronics, 55(3), 1160-1174.
  • [33] Khiari, B., Sellami, A., Andoulsi, R., &Mami, A. (2012). A Novel Strategy Control of Photovoltaic Solar Pumping System Based on Sliding Mode Control. International Review of Automatic Control (IREACO), 5(2), 118-125.
  • [34] Natal, G. S., Chemori, A., & Pierrot, F. (2014). Dual-space control of extremely fast parallel manipulators: Payload changes and the 100g experiment. IEEE Transactions on Control Systems Technology, 23(4), 1520-1535.
  • [35] Allouche, B., Dequidt, A., Vermeiren, L., &Dambrine, M. (2017). Modeling and PDC fuzzy control of planar parallel robot: A differential–algebraic equations approach. International Journal of Advanced Robotic Systems, 14(1), 1729881416687112.
  • [36] Le, Q. D., Kang, H. J., & Le, T. D. (2016, August). Adaptive extended computed torque control of 3 DOF planar parallel manipulators using neural network and error compensator. In International Conference on Intelligent Computing (pp. 437-448). Springer, Cham.
  • [37] Doan, Q. V., Le, T. D., Le, Q. D., & Kang, H. J. (2018). A neural network–based synchronized computed torque controller for three degree-of-freedom planar parallel manipulators with uncertainties compensation. International Journal of Advanced Robotic Systems, 15(2), 1729881418767307.
  • [38] Nguyen, V. A., Vermeiren, L., Dequidt, A., Nguyen, A. T., Dambrine, M., &Cung, L. (2018, May). Takagi-Sugeno fuzzy descriptor approach for trajectory control of a 2-DOF serial manipulator. In 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA) (pp. 1284-1289). IEEE.
  • [39] Becerra-Vargas, M., &Morgado Belo, E. (2012). Application of H∞ theory to a 6 DOF flight simulator motion base. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34(2), 193-204.
  • [40] Rachedi, M., Hemici, B., &Bouri, M. (2015). Design of an H∞controller for the Delta robot: experimental results. Advanced Robotics, 29(18), 1165-1181.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb070ad9-efd1-47bd-9102-0a84d85be519
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.