PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aryl and N-arylamide carbon nanotubes for electrical coupling of laccase to electrodes in biofuel cells and biobatteries

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Single walled carbon nanotubes (SWCNTs) were equipped with aryl residues by chemical reactions. These insoluble materials were used to substitute classical soluble mediators, which help to transfer electrical charge between the conducting electrode and the redox active center of enzyme molecules. The effect of different aryl residues on the efficiency of the catalytic reduction of dioxygen in the presence of laccase was systematically studied using voltammetry and measuring the power output of a biofuel cell.
Twórcy
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Faculty of Chemistry, University of Warsaw, Warsaw, Poland
autor
  • Faculty of Chemistry, University of Warsaw, Warsaw, Poland
autor
  • Department of Biochemistry, Maria Curie Sklodowska University, Lublin, Poland
  • Department of Chemistry and Biochemistry, The University of Tulsa, Tulsa, USA
autor
  • Faculty of Chemistry, University of Warsaw, Warsaw, Poland
  • Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
Bibliografia
  • [1] Barton SC, Gallaway J, Atanassov P. Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 2004; 104: 4867–86.
  • [2] Cracknell JA, Vincent KA, Armstrong FA. Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis. Chem Rev 2008; 108: 2439–61.
  • [3] Armstrong FA. In: Wieckowski A, editor. Fuel cell science: theory, fundamentals and biocatalysis. Hoboken, NJ: John Wiley & Sons, Inc.; 2010. pp. 237–57.
  • [4] Bilewicz R, Opallo M. Biocathodes for dioxygen reduction in biofuel cells. In: Wieckowski JK, Norskov, editors. Fuel cell science: theory, fundamentals and bio-catalysis. Weinheim: John Wiley& Sons; 2010. pp. 169–214.
  • [5] Holzinger M, Le Goff A, Cosnier S. Carbon nanotube/enzyme biofuel cell. Electrochim Acta 2012; 82: 179–90.
  • [6] Heller A. Potentially implantable miniature batteries. Anal Bioanal Chem 2006; 385: 469–73.
  • [7] Cinquin P, Gondran Ch, Giroud F, Mazabrard S, Pellissier A, Boucher F, et al. A glucose biofuel cell implanted in rats. PLoS ONE 2010; 5: e10476.
  • [8] Zhou M, Wang J. Biofuel cells for self-powered electrochemical biosensing and logic biosensing: a review. Electroanalysis 2012; 24: 197–209.
  • [9] Zhou M, Zhou N, Kuralay F, Windmiller JR, Parkhomovsky S, Valdés-Ramírez G, et al. Examples of real implantation are described. A Self-Powered ‘‘Sense-Act-Treat’’ system that is based on a biofuel cell and controlled by boolean logic. Angew Chem Int Ed 2012. http://dx.doi.org/10.1002/ anie.201107068.
  • [10] Halámková L, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E. Implanted biofuel cell operating in a living snail. J Am Chem Soc 2012; 134: 5040–3.
  • [11] Nazaruk E, Sadowska K, Madrak K, Biernat JF, Rogalski J, Bilewicz R. Composite bioelectrodes based on lipidic cubic phase with carbon nanotube network. Electroanalysis 2009; 21: 507–11.
  • [12] Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov AI, Whittaker JW, et al. Review. Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron 2005; 20: 2517–54.
  • [13] Palmer AE, Randall DW, Xu F, Solomon EI. Spectroscopic studies and electronic structure description of the high potential type 1 copper site in fungal laccase: insight into the effect of the axial ligand. J Am Chem Soc 1999; 121: 7138–49.
  • [14] Sosna M, Chretien J-M, Kilburn JD, Bartlett PN. Monolayer anthracene and anthraquinone modified electrodes as platforms for Trametes hirsuta laccase immobilization. Phys Chem Chem Phys 2010; 12: 10018–26.
  • [15] Parimi NS, Umasankar Y, Atanassov P, Ramasamy RP. Kinetic and mechanistic parameters of laccase catalyzed direct electrochemical oxygen reduction reaction. ACS Catal 2012; 2: 38–44.
  • [16] Stolarczyk K, Sepelowska M, Lyp D, Żelechowska K, Biernat JF, Rogalski J, et al. Hybrid biobattery based on arylated carbon nanotubes and laccase. Bioelectrochemistry 2012; 87: 154–63.
  • [17] Osman MH, Shah AA, Walsh FC. Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells. Biosens Bioelectron 2011; 26: 3087–102.
  • [18] Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Phys Chem Chem Phys 2007; 9: 1793–801.
  • [19] Harris PF. Carbon nanotube science. Cambridge, UK: Cambridge Publishers; 2009.
  • [20] Ivnitski D, Artyushkova K, Rincon RA, Atanassov P, Luckarift HR, Johnson GR. Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: glucose oxidase-catalyzed direct electron transfer. Small 2008; 4: 357–64.
  • [21] Lyons MEG, Keeley GP. Immobilized enzyme-single-wall carbon nanotube composites for amperometric glucose detection at a very low applied potential. Chem Commun 2008; 22: 2529–31.
  • [22] Zhou Y, Yang H, Chen HY. Direct electrochemistry and reagentless biosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes. Talanta 2008; 76: 419–23.
  • [23] Deng L, Shang L, Wang Y, Wang T, Chen H, Dong S. Multilayer structured carbon nanotubes/poly-L-lysine/ laccase composite cathode for glucose/O-2 biofuel cell. Electrochem Commun 2008; 10: 1012–5.
  • [24] Zheng W, Zhou HM, Zheng YF, Wang N. A comparative study on electrochemistry of laccase at two kinds of carbon nanotubes and its application for biofuel cell. Chem Phys Lett 2008; 457: 381–5.
  • [25] Gallaway J, Wheeldon I, Rincon R, Atanassov P, Banta S, Barton SC. Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor. Biosens Bioelectron 2008; 23: 1229–35.
  • [26] Cai C, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem 2004; 332: 75–83.
  • [27] Lee YM, Kwon OY, Yoon YJ, Ryu K. Immobilization of horseradish peroxidase on multi-wall carbon nanotubes and its electrochemical properties. Biotechnol Lett 2006; 28: 39–43.
  • [28] Yan Y, Zheng W, Su L, Mao L. Carbon-nanotube-based glucose/O2 biofuel cells. Adv Mater 2006; 18: 2639–43.
  • [29] Menard-Moyon C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes for probing and modulating molecular functions. Chem Biol 2010; 17: 107–15.
  • [30] Britto PJ, Santhanam KSV, Rubio A, Alonso JA, Ajayan PM. Improved charge transfer at carbon nanotube electrodes. Adv Mater 1999; 11: 154–7.
  • [31] Hirsch A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 2002; 41: 1853–9.
  • [32] Nakashima N, Tanaka Y, Fujigaya T. Solubilized carbon nanotubes and their redox chemistry. In: D'Souza F, Kadish KM, editors. Handbook of carbon nano materials, vol. 1. Singapore: World Scientific Publishing Co Pte Ltd.; 2011. pp. 245.
  • [33] Herrero MA, Vasquez E, Prato M. Recent advances in covalent functionalization and characterization of carbon nanotubes. In: D'Souza F, Kadish KM, editors. Handbook of carbon nano materials, vol. 1. Singapore: World Scientific Publishing Co Pte Ltd.; 2011. pp. 271.
  • [34] Mitchell CA, Bahr JI, Arepalli S, Tour JM, Krishnamoorti R. Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 2002; 35: 8825–30.
  • [35] Palmore GTR, Kim HH. Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell. J Electroanal Chem 1999; 464: 110–7.
  • [36] Barton SC, Kim HH, Binyamin G, Zhang Y, Heller A. Electroreduction of O2 to water on the 'Wired' laccase cathode. J Phys Chem B 2001; 105: 11917–21.
  • [37] Mano N, Kim HH, Heller A. Miniature biofuel cells. J Phys Chem B 2002; 106: 8842–8.
  • [38] Mano N, Fernandez JL, Kim Y, Shin W, Bard AJ, Heller A. Oxygen is electroreduced to water on a ‘‘wired’’ enzyme electrode at a lesser overpotential than on platinum. J Am Chem Soc 2003; 125: 15290–1.
  • [39] Tsujimura S, Kawaharada M, Nakagawa T, Kano K, Ikeda T. Mediated bioelectrocatalytic O2 reduction to water at highly positive electrode potentials near neutral pH. Electrochem Commun 2003; 5: 138–41.
  • [40] Kavanagh P, Jenkins P, Leech D. Electroreduction of O2 at a mediated Melanocarpus albomyces laccase cathode in a physiological buffer. Electrochem Commun 2008; 10: 970–2.
  • [41] Bilewicz R, Stolarczyk K, Sadowska K, Rogalski J, Biernat JF. Carbon nanotubes derivatized with mediators for laccase catalyzed oxygen reduction. ECS Trans 2009; 19: 27–36.
  • [42] Nazaruk E, Sadowska K, Biernat JF, Rogalski J, Ginalska G, Bilewicz R. Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications. Anal Bioanal Chem 2010; 398: 1651–60.
  • [43] Sadowska K, Stolarczyk K, Biernat JF, Roberts KP, Rogalski J, Bilewicz R. Derivatization of single-walled carbon nanotubes with redox mediator for biocatalytic oxygen electrodes. Bioelectrochemistry 2010; 80: 73–80.
  • [44] Bilewicz R, Nazaruk E, Żelechowska K, Biernat JF, Stolarczyk K, Roberts KP, et al. Carbon nanotubes chemically derivatized with redox systems as mediators for biofuel cell applications. Biocybern Biomed Eng 2011; 31: 17–30.
  • [45] Banks CE, Wildgoose GG, Heald CGR, Compton RG. Oxygen reduction catalysis at anthraquinone centres molecularly wired via carbon nanotubes. J Iran Chem Soc 2005; 2: 60–4.
  • [46] Blanford CF, Heath RS, Armstrong FA. A stable electrode for high-potential, electrocatalytic O2 reduction based on rational attachment of a blue copper oxidase to a graphite surface. Chem Commun 2007; 1710–2.
  • [47] Doppelt P, Hallais G, Pinson J, Podvorica F, Verneyre S. Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts. Chem Mater 2007; 19: 4570–5.
  • [48] Sadowska K, Roberts KP, Wiser R, Biernat JF, Jabłonowska E, Bilewicz R. Synthesis, characterization and electrochemical testing of carbon nanotubes derivatized with azobenzene and anthraquinone. Carbon 2009; 47: 1501–10 [and references cited thereof].
  • [49] Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 2008; 41: 60–8.
  • [50] Sadowska K, Jabłonowska E, Stolarczyk K, Wiser R, Bilewicz R, Roberts KP, et al. Chemically modified carbon nanotubes: synthesis and implementation. Pol J Chem 2008; 82: 1309–13.
  • [51] Nazaruk E, Karaskiewicz M, Żelechowska K, Biernat JF, Rogalski J, Bilewicz R. Powerful connection of laccase and carbon nanotubes. Material for mediator-free electron transport on the enzymatic cathode of the biobattery. Electrochem Commun 2012; 14: 67–70.
  • [52] Karaśkiewicz M, Nazaruk E, Żelechowska K, Biernat JF, Rogalski J, Bilewicz R. Fully enzymatic mediatorless fuel cell with efficient naphthylated carbon nanotube–laccase composite cathodes. Electrochem Commun 2012; 20: 124–7.
  • [53] Stolarczyk K, Lyp D, Żelechowska K, Biernat JF, Rogalski J, Bilewicz R. Arylated carbon nanotubes for biobatteries and biofuel cells. Electrochim Acta 2012; 79: 74–81.
  • [54] Polish Patent Application No P. 389509 (2011).
  • [55] Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 2003; 107: 3712–8.
  • [56] Harutyunyan AR, Pradhan BK, Chang JP, Chen GG, Eklund PC. Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles. J Phys Chem B 2002; 106: 8671–5.
  • [57] Janusz G. Ph.D. Thesis, UMCS, Lublin; 2005. pp. 222.
  • [58] Leonowicz A, Grzywnowicz K. Quantitative estimation of laccase forms in some white-rot-fungi using syringaldazine as a substrate. Enzyme Microb Technol 1981; 3: 55–8.
  • [59] Long D, Wu G, Zhu G. Noncovalently modified carbon nanotubes with carboxymethylated chitosan: a controllable donor–acceptor nanohybrid. Int J Mol Sci 2008; 9: 120–30.
  • [60] Chiang W, Brinson BE, Huang AY, Willis PA, Bronikowski MJ, Margrave JL, et al. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco Process). J Phys Chem B 2001; 105: 8297–301.
  • [61] Dillon EP, Crouse CA, Barron AR. Synthesis, characterization, and carbon dioxide adsorption of covalently attached polyethyleneimine – functionalized single wall carbon nanotubes. ACS Nano 2008; 2: 156–64.
  • [62] Shin W, Lee J, Kim Y, Steinfink H, Heller A. Ionic conduction in Zn3(PO4)24H2O enables efficient discharge of the zinc anode in serum. J Am Chem Soc 2005; 127: 14590–1.
  • [63] Nogala W, Celebanska A, Wittstock G, Opallo M. Bioelectrocatalytic carbon ceramic gas electrode for reduction of dioxygen and its application in a zinc-dioxygen cell. Fuel Cells 2010; 10: 1157–63.
  • [64] Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications, 2nd ed., New York: Wiley; 2001.
  • [65] Jensen UB, Lörcher S, Vagin M, Chevallier J, Shipovskov S, Koroleva O, et al. A 1.76 V hybrid Zn–O2 biofuel cell with a fungal laccase-carbon cloth biocathode. Electrochim Acta 2012; 62: 218–26.
  • [66] Gromov A, Dittmer S, Svensson J, Nerushev OA, Perez-García SA, Licea-Jiménez L, et al. Covalent amino-functionalisation of single-wall carbon nanotubes. J Mater Chem 2005; 15: 3334–9.
  • [67] Kiguchi M, Takahashi T, Takahashi Y, Yamauchi Y, Murase T, Fujita M, et al. Electron transport through single molecules comprising aromatic stacks enclosed in self-assembled cages. Angew Chem Int Ed 2011; 50: 5588.
  • [68] Meredith MT, Minson M, Hickey D, Artyushkova K, Glatzhofer DT, Minteer SD. Anthracene-modified multi-walled carbon nanotubes as direct electron transfer scaffolds for enzymatic oxygen reduction. ACS Catal 2011; 1: 1683–90.
  • [69] Sosna M, Stoica L, Wright E, Kilburn JD, Schuhmann W, Bartlett PN. Mass transport controlled oxygen reduction at anthraquinone modified 3D-CNT electrodes with immobilized Trametes hirsuta laccase. Phys Chem Chem Phys 2012; 14: 11882–5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb058b2d-0684-4ca6-b1e0-ffc602a72f30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.