PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser cladding of Co-based metallic powder at cryogenic conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper was demonstration a novel technique of laser cladding by experimentally composed Co-based metallic powder and forced cooling of the substrate by liquid nitrogen under cryogenic conditions, at the temperature -190°C, for producing clad layers with enhanced microstructure characteristic and properties. Design/methodology/approach: Technological tests of laser cladding were conducted by means of a high power fibre laser HPFL with maximum output power 3.0 kW, and six-axis robot. The experimental Co-based powder was composed for providing high abrasive wear resistance, high resistance for impact load, and also for corrosion resistance at elevated temperature. The unique and novel technique of forced cooling of the substrate was provided by immersing the specimens in the liquid nitrogen bath. The three coaxial nozzle head was designed and custom made to provide precise deposition of the powder delivered into the laser beam irradiation region. The scope of the study included tests of conventional laser cladding at free cooling in ambient air in a wide range of processing parameters, and also trials of laser cladding under cryogenic conditions. The test clad layers produced by conventional laser cladding and by the novel technique of laser powder deposition under cryogenic conditions were investigated and compared. Findings: The obtained results indicate that the novel technique of forced cooling the substrate by liquid nitrogen bath provides lower penetration depth, as well as low dilution of the clad, and also provides higher hardness of the clads. Additionally, it is possible shaping the geometry of the individual bead, providing high reinforcement and low width. Research limitations/implications: The presented results are based just on preliminary test of the novel technique of laser cladding under cryogenic conditions. Therefore, further study and detailed analyse of the influence of the cooling rate on the quality, microstructure, and properties of the deposited coatings are required. Practical implications: The study is focused on practical application of the novel technique for manufacturing of wear resistance coatings characterised with enhanced performance compared to conventional range of application of the laser cladding. Originality/value: Novel technique of laser cladding at forced cooling under cryogenic conditions was demonstrated. The powder used for cladding trials was experimentally composed (not commercially available). The experimental stand custom made was used with custom made powder feeding rate, and also with custom made coaxial nozzle head.
Rocznik
Strony
20--31
Opis fizyczny
Bibliogr. 39 poz., rys., tab., tab.
Twórcy
autor
  • Department of Welding Engineering, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • PROGRESJA, ul. 1 Maja 35, 41-940 Piekary Śląskie, Poland
autor
  • Department of Welding Engineering, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • PROGRESJA, ul. 1 Maja 35, 41-940 Piekary Śląskie, Poland
Bibliografia
  • [1] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T. Tański, E. Jonda, A. Drygała, M. Bonek, Laser surface treatment in manufacturing, HandBook of Manufacturing Engineering and Technology, 2015, 2677-2717.
  • [2] A. Zieliński, H. Smoleńska, W. Serbiński, W. Kończewicz, Characterization of the Co-base layers obtained by laser cladding technique, Journal of Materials Processing Technology 164-165 (2005) 958-963, DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.093.
  • [3] D. Janicki, J. Górka, A. Czupryński, W. Kwaśny, M. Żuk, Diode laser cladding of Co-based composite coatings reinforced by spherical WC particles, Proceedings of SPIE 10159 (2016) 101590N, DOI: https://doi.org/10.1117/12.2261675.
  • [4] G. Moskal, A. Grabowski, A. Lisiecki, Laser remelting of silicide coatings on Mo and TZM alloy, Solid State Phenomena 226 (2015) 121-126, DOI: https://doi.org/10.4028/www.scientific.net/SSP.226.121.
  • [5] T. Kik, J. Moravec, I. Novakova, New method of processing heat treatment experiments with numerical simulation support, Proceedings of the Modtech International Conference - Modern Technologies in Industrial Engineering V, Vol. 227, 2017, Article Number: UNSP 012069.
  • [6] R. Burdzik, T. Węgrzyn, Ł. Konieczny, A. Lisiecki, Research on influence of fatigue metal damage of the inner race of bearing on vibration in different frequencies, Archives of Metallurgy and Materials 59/4 (2014) 1275-1281, DOI: https://doi.org/10.2478/amm-2014-0218.
  • [7] A. Lisiecki, Welding of titanium alloy by different types of lasers, Archives of Materials Science and Engineering 58/2 (2012) 209-218.
  • [8] K. Labisz, T. Tański, D. Janicki, W. Borek, K. Lukaszkowicz, L.A. Dobrzański, Effect of laser feeding on heat treated aluminium alloy surface properties, Archives of Metallurgy and Materials 61/2 (2016) 741-746, DOI: https://doi.org/10.1515/amm2016-0126.
  • [9] A. Lisiecki, D. Ślizak, A. Kukofka, Robotic fiber laser cladding of steel substrate with iron-based metallic powder, Materials Performance and Characterization 8/6 (2019) 1202-1213, DOI: https://doi.org/10.1520/MPC20190068.
  • [10] A. Lisiecki, Study of optical properties of surface layers produced by laser surface melting and laser surface nitriding of titanium alloy, Materials 12 (2019) 3112, DOI: https://doi.org/10.3390/ma12193112.
  • [11] A. Kurc-Lisiecka, A. Lisiecki, Hybrid Laser-GMA Welding of High-Strength Steel Grades, Materials Performance and Characterization 8/4 (2019) 614-625, DOI: https://doi.org/10.1520/MPC20190070.
  • [12] J. Górka, T. Kik, A. Czupryński, W. Foreiter, Technology of welding hard wearing plates, Welding International 28/10 (2014) 749-755, DOI: https://doi.org/10.1080/09507116.2012.753223.
  • [13] A. Lisiecki, D. Ślizak, A. Kukofka, Robotized Fiber Laser Cladding of Steel Substrate by Metal Matrix Composite Powder at Cryogenic Conditions, Materials Performance and Characterization 8/6 (2019) 1214-1225, DOI: https://doi.org/10.1520/MPC20190069.
  • [14] A. Klimpel, A. Czupryński, J. Górka, T. Kik, M. Melcer, A study of modern materials for arc spraying, Welding International 28/2 (2014) 100-106, DOI: https://doi.org/10.1080/09507116.2012.708479.
  • [15] A. Klimpel, L.A. Dobrzański, A. Lisiecki, D. Janicki, The study of properties of Ni-WC wires surfaced deposits, Journal of Materials Processing Technology 164-165 (2005) 1046-1055, DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.195.
  • [16] A. Lisiecki, R. Burdzik, P. Folga, B. Oleksiak, Ł. Konieczny, G. Siwiec, J. Warczek, Disk laser welding of car body zinc coated steel sheets, Archives of Metallurgy and Materials 60/4 (2015) 2913-2922, DOI: https://doi.org/10.1515/amm-2015-0465.
  • [17] J. Górka, A. Czupryski, M. Żuk, M. Adamiak, A. Kopy, Properties and structure of deposited nanocrystalline coatings in relation to selected construction materials resistant to abrasive wear, Materials 11/7 (2018) 1184, DOI: https://doi.org/10.3390/ma11071184.
  • [18] A. Świerczyńska, J. Łabanowski, J. Michalska, D. Fydrych, Corrosion behavior of hydrogen charged super duplex stainless steel welded joints, Materials and Corrosion 68/10 (2017) 1037-1045, DOI: https://doi.org/10.1002/maco.201709418.
  • [19] A. Lisiecki, Mechanism of laser surface modification of the Ti-6Al-4V alloy in nitrogen atmosphere using a high power diode laser, Advanced Materials Research 1036 (2014) 411-416, DOI: https://doi.org/10.4028/www.scientific.net/AMR.1036.411.
  • [20] A. Lisiecki, J. Piwnik, Tribological characteristic of titanium alloy surface layers produced by diode laser gas nitriding, Archives of Metallurgy and Materials 61/2 (2016) 543-552, DOI: https://doi.org/10.1515/amm-2016-0094.
  • [21] A. Kurc-Lisiecka, Impact toughness of laser-welded butt joints of the new steel grade strenx 1100MC, Materiali in Tehnologije 51/4 (2017) 643-649, DOI: https://doi.org/10.17222/mit.2016.234.
  • [22] A. Lisiecki, Mechanisms of hardness increase for composite surface layers during laser gas nitriding of the Ti6Al4V alloy, Materiali in Tehnologije 51/4 (2017) 577-583, DOI: https://doi.org/10.17222/mit.2016.106.
  • [23] A. Lisiecki, A. Kurc-Lisiecka, Erosion wear resistance of titanium-matrix composite Ti/TiN produced by diode-laser gas nitriding, 51/1 (2017) 29-34, DOI: https://doi.org/10.17222/mit.2015.160.
  • [24] M. Staszuk, L.A. Dobrzański, T. Tański, W. Kwaśny, M. Musztyfaga-Staszuk, The effect of PVD and CVD coating structures on the durability of sintered cutting edges, Archives of Metallurgy and Materials 59/1 (2014) 269-274, DOI: https://doi.org/10.2478/amm-2014-0044.
  • [25] A. Grajcar, A. Plachcińska, S. Topolska, M. Kciuk, Effect of thermomechanical treatment on the corrosion behaviour of Si- and Al-containing high-Mn austenitic steel with Nb and Ti micro-additions, Materiali in Tehnologije 49/6 (2015) 889-894, DOI: https://doi.org/10.17222/mit.2014.148.
  • [26] J. Xiong, F. Nie, H. Zhao, L. Zheng, J. Luo, L. Yang, Z. Wen, Microstructure Evolution and Failure Behavior of Stellite 6 Coating on Steel after Long-Time Service, Coatings 9/9 (2019) 532, DOI: https://doi.org/10.3390/coatings9090532.
  • [27] M.M. Ferozhkhan, M. Duraiselvam, K.G Kumar, R. Ravibharath, Plasma transferred arc welding of Stellite 6 alloy on stainless steel for wear resistance, Procedia Technology 25 (2016) 1305-1311, DOI: https://doi.org/10.1016/j.protcy.2016.08.226.
  • [28] G.R Mirshekari, S. Daee, S.F. Bonabi, M.R. Tavakoli, A. Shafyei, M. Safaeia, Efect of interlayers on the microstructure and wear resistance of Stellite 6 coatings deposited on AISI 420 stainless steel by GTAW technique, Surfaces and Interfaces 9 (2017) 79-92, DOI: https://doi.org/10.1016/j.surfin.2017.08.005.
  • [29] F. Molleda, J. Mora, F.J. Molleda, E. Mora, E. Carrillo, B.G. Mellor, A study of the solid–liquid interface in cobalt base alloy (Stellite) coatings deposited by Fusion welding (TIG), Materials Characterization 57/4-5 (2006) 227-231, DOI: https://doi.org/10.1016/j.matchar.2006.01.016.
  • [30] T. Giętka, K. Ciechacki, T. Kik, Numerical Simulation of Duplex Steel Multipass Welding, Archives of Metallurgy and Materials 61 (2016) 1975-1984, DOI: https://doi.org/10.1515/amm-2016-0319.
  • [31] T. Kik, J. Moravec, I. Novakova, Application of Numerical Simulations on 10GN2MFA Steel Multilayer Welding, Dynamical Systems in Applications 249 (2018) 193-204, DOI: https://doi.org/10.1007/978-3-319-96601-4_18.
  • [32] A. Kurc-Lisiecka, A. Lisiecki, Weld metal toughness of autogenous laser-welded joints of high-strength steel DOMEX 960, Materials Performance and Characterization 8/6 (2019) 1226-1236, DOI: https://doi.org/10.1520/MPC20190071.
  • [33] J. Moravec, I. Novakova, J. Sobotka, T. Kik, Application possibilities of the low-temperature repairs on creep-resistance turbine components from material GX23CrMoV12-1, Innovative Technologies in Engineering Production (ITEP'18) Book Series: MATEC Web of Conferences, Vol. 244, 2018, 01017.
  • [34] J. Moravec, T. Kik, I. Novakova, Application of numerical simulations on X10CrWMoVNb9-2 steel multilayer welding, MM Science Journal (2016) 1190-1193, DOI: https://doi.org/10.17973/MMSJ.2016_11_201628.
  • [35] Z.Wang, J. Zhao, Y. Zhao, H. Zhang, F. Shi, Microstructure and Microhardness of Laser Metal Deposition Shaping K465/Stellite-6 Laminated Material, Metals 7 (2017) 512, DOI: https://doi.org/ 10.3390/met7110512.
  • [36] A. Razavykia, C. Delprete, P. Baldissera, Correlation between Microstructural Alteration, Mechanical Properties and Manufacturability after Cryogenic Treatment: A Review, Materials 12/20 (2019) 3302, DOI: https://doi.org/10.3390/ma12203302.
  • [37] A. Zieliński, M. Jażdżewska, A. Narożniak-Łuksza, W. Serbiński, Surface structure and properties of Ti6Al4V alloy laser melted at cryogenic conditions, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 423-426.
  • [38] A. Zieliński, W. Serbiński, B. Majkowska, M. Jażdżewska, I. Skalski, Influence of laser remelting st cryogenic conditions on corrosion resistance of nonferrous alloys, Advances in Materials Science 9/4 (2009) 21-28, DOI: https://doi.org/10.2478/v10077-009-0018-9.
  • [39] B. Majkowska, W. Serbiński, Cavitation wearing of the SUPERSTON alloy after laser treatment at cryogenic conditions, Solid State Phenomena 165 (2010) 306-309, DOI: https://doi.org/10.4028/www.scientific.net/SSP.165.306.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb0511ab-ac16-4c2d-83bd-60169099d3f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.