Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Real-time motion control is basically dependent on robot kinematics analysis where there is no unique solution of the inverse kinematics of serial manipulators. The predictive artificial neural network is a powerful one for finding appropriate results based on training data. Therefore, an artificial neural network is proposed to implement on Arduino microcontroller for a 4-DOF robot manipulator where the inverse kinematics problem was partitioned to suit the low specification of the board CPU. With MATALB toolbox, multiple neural network configuration based were trained and experienced for the best fit of the dimensionless feedforward data that is obtained from the forward kinematics of reachable workspace with average MSE of 6.5e-7. The results showed the superior of the proposed networks reducing the joints error by 90 % at least with comparing to traditional one. An Arduino on-board program was developed to control the robot independly based on pre validated parameters of the network. The experimental results approved the proposed method to implement the robot in real time with maximum error of (± 0.15 mm) in end effector position. The presented approach can be applied to achieve a suitable solution of n-DOF self-depend robot implementation using micro stepping actuators.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 2024114
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Al-Furat Al-Awsat Technical University, Technical Institute of Al-Mussaib, Iraq
autor
- Al-Furat Al-Awsat Technical University, Technical Institute of Al-Mussaib, Iraq
autor
- Al-Furat Al-Awsat Technical University, Technical Institute of Al-Mussaib, Iraq
Bibliografia
- 1. Xiao F, Li G, Jiang D, Xie Y, Yun J, Liu Y. An effective and unified method to derive the inverse kinematics formulas of general six-DOF manipulator with simple geometry. Mechanism and Machine Theory 2021; 159: 104265. https://doi.org/10.1016/j.mechmachtheory.2021.104 265.
- 2. Mohammed AA, Sunar M. Kinematics modeling of a 4-DOF robotic arm. Proceedings - 2015 International Conference on Control, Automation and Robotics, ICCAR 2015. 2015; 87-91. https://doi.org/10.1109/ICCAR.2015.7166008.
- 3. Raheem FA, Kareem AR, Humaidi AJ. Inverse kinematics solution of robot manipulator endeffector position using multi-neural networks. Engineering and Technology Journal 2016. 28; 34(7): 1360-8. https://etj.uotechnology.edu.iq/article_115849.html.
- 4. Kenshimov C, Sundetov T, Kunelbayev M, Sarzhan M, Kutubayeva M, Amandykuly A. Developing application techniques of kinematics and simulation model for InMoov robot. Eastern-European Journal of Enterprise Technologies. 2022; 30;4(7(118) SEApplied mechanics): 79-88. https://doi.org/10.15587/1729-4061.2022.261039.
- 5. Jha P, Biswal BB. A neural network approach for inverse kinematic of a SCARA manipulator. IAES International Journal of Robotics and Automation (IJRA). 2014; 3(1): 52-61. https://doi.org/10.11591/ijra.v3i1.3201.
- 6. Duka AV. Neural network based inverse kinematics solution for trajectory tracking of a robotic arm. Procedia Technology. 2014; 12: 20-7. https://doi.org/10.1016/j.protcy.2013.12.451.
- 7. Almusawi ARJ, Dülger LC, Kapucu S. A new artificial neural network approach in solving inverse kinematics of robotic arm (Denso VP6242). Comput Intell Neurosci 2016. https://doi.org/10.1155/2016/5720163.
- 8. Çabuk N, Bakırcıoğlu V. Altı Serbestlik Dereceli Bir Aydınlatma Manipülatörünün Yapay Sinir Ağları Temelli Ters Kinematik Çözümü ve Benzetimi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. 2018; (January): 117-25. https://doi.org/10.29109/http-gujsc-gazi-edutr.328422.
- 9. Aravinddhakshan S, Apte S, Akash SM. Neural network based inverse kinematic solution of a 5 DOF Manipulator for industrial application. J Phys Conf Ser 2021; 1969(1). https://doi.org/10.1088/1742-6596/1969/1/012010.
- 10. Elawady WM, Bouteraa Y, Elmogy A. An adaptive second order sliding mode inverse kinematics approach for serial kinematic Chain robot manipulators. Robotics. 2020; 9(1). https://doi.org/10.3390/robotics9010004.
- 11. Narayan J, Singla A. ANFIS based kinematic analysis of a 4-DOFs SCARA robot. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). IEEE; 2017. 205-11. https://doi.org/10.1109/ISPCC.2017.8269676.
- 12. Refaai MRA. Using multiple adaptive neuro-fuzzy inference system to solve inverse kinematics of SCARA Robot. 18th IEEE International MultiConference on Systems, Signals and Devices, SSD 2021. 2021; 154-9. https://doi.org/10.1109/SSD52085.2021.9429498.
- 13. Demby’s J, Gao Y, DeSouza GN. A study on solving the inverse kinematics of serial robots using artificial neural network and fuzzy neural network. 2019 IEEE International Conference on Fuzzy Systems (FUZZIEEE). IEEE 2019; 1-6. https://doi.org/10.1109/FUZZ-IEEE.2019.8858872.
- 14. Dejan. SCARA robot 3D model. 2020. [available] https://thangs.com/designer/m/3d-model/38897.
- 15. Sciavicco L, Siciliano B. Modelling and control of robot manipulators. Springer Science & Business Media; 2012.
- 16. Xia C, Sun C, Han J. Design and structural parameter optimization of airborne horticultural multi-DOF Manipulator. Journal of Applied Science and Engineering 2020; 23(3): 531-8. https://doi.org/10.6180/jase.202009_23(3).0017.
- 17. Spong MW, Hutchinson S, Vidyasagar M. Robot Modeling and Control 1st ed. Vol. 9. JOHN WILEY & SONS, INC.; 2013.
- 18. Atify M, Bennani M, Abouabdellah A. Structure optimization of a hexapod robot. International Journal on Technical and Physical Problems of Engineering. 2022; 14(1): 42-9.
- 19. Moretti CB. Neurona library for arduino. 2016. [available] http://www.moretticb.com/Neurona/#reference-mlpforward.
- 20. McCauley M. AccelStepper library for Arduino. [available] http://www.airspayce.com/mikem/arduino/AccelSte pper/index.html.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb038caa-43e5-486f-9365-2be274006c62