PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimally controlled heating of solid particles in a fluidised bed with a dispersive flow of the solid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study the authors minimise the total process cost for the heating of solid particles in a horizontal fluidised bed by an optimal choice of the inlet heating gas temperature profile and the total gas flow. Solid particles flowed along the apparatus and were heated by a hot gas entering from the bottom of the fluidised apparatus. The hydrodynamics of the fluidised bed is described by a twophase Kunii – Levenspiel model. We assumed that the gas was flowing only vertically, whereas solid particles were flowing horizontally and because of dispersion they could be additionally mixed up in the same direction. The mixing rate was described by the axial dispersion coefficient. As any economic values of variables describing analysing process are subject to local and time fluctuations, the accepted objective function describes the total cost of the process expressed in exergy units. The continuous optimisation algorithm of the Maximum Principle was used for calculations. A mathematical model of the process, including boundary conditions in a form convenient for optimisation, was derived and presented. The optimization results are presented as an optimal profile of inlet gas temperature. The influence of heat transfer kinetics and dispersion coefficients on optimal runs of the heating process is discussed. Results of this discussion constitute a novelty in comparison to information presented in current literature.
Rocznik
Strony
65--76
Opis fizyczny
Bibliogr. 6 poz., il. tab.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Berry R.S., Kazakov V.A., Sieniutycz S., Szwast Z., Tsirlin A.M., 2000. Thermodynamic Optimization of Finite-Time Processes. Wiley, New York.
  • 2. Kunii D., Levenspiele O., 1991. Fluidization Engineering. Butterworth-Heinemann, Boston.
  • 3. Pontryagin L.S., Boltyanski V.G., Gamkrelidze R.V., Mischenko E.F., 1962. The Mathematical Theory of Optimal Process. Interscience, New York.
  • 4. Poświata A., Szwast Z., 2000. Optymalizacja procesu wymiany ciepła w nieidealnym złożu fluidalnym. Inż. Aparat. Chem., 3s/2000, 116-117.
  • 5. Poświata A., 2008. Exergy-based efficiency of fluidised heat exchanger. The 21st International Conference on efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2008, CracowGliwice, Poland, 24-27 June, 2008, 171-178.
  • 6. Poświata A., Szwast Z., 2010. Minimum of exergy consumption in a horizontal fluidised heat exchanger. Heat Transf. Res., 41, 3, 265-282. DOI: 10.1615/HeatTransRes.v41.i3.50
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb01f77e-690c-4843-88e0-c32000e65c3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.