PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using TeX Markup Language for 3D and 2D Geological Plotting

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents technical application of TeX high-level, descriptive markup language for processing geological dataset from soil laboratory. Geotechnical measurements included equivalent soil cohesion, absolute and absolute deformation index, soil compressibility coefficient by time of immersion depth, exposure time to compressive strength to samples and physical and mechanical properties (humidity, density). Dataset was received from laboratory based experimental tests of the physical and mechanical properties of soils. Data were converted to csv table and processed by LaTeX. Methodology is based on LaTeX packages: {tikz}, {tikz-3dplot}, {tikzpicture}, {pgfplot}, {filecontetns}, {spy} for 3D plotting showing correlation in variables and descriptive statistical analysis based on the data array processing. Results demonstrated LaTeX scripts and graphics: 2D and 3D scatterplots, ternaries, bar charts, boxplots, zooming techniques detailing fragment of the plot, flowchart. Research novelty consists in technical approach of TeX language application for geo- logical data processing and graphical visualization. Engineering graphics by TeX was demonstrated with screenshots of the codes used for plotting.
Rocznik
Strony
43--69
Opis fizyczny
Bibliogr. 70 poz., rys.
Twórcy
  • Geoprojectsurvey LLC, Moscow, Russian Federation
  • Schmidt Institute of Physics of the Earth, Russian Academy of Sciences. Laboratory of Regional Geophysics and Natural Disasters (No. 303). 10 Bolshaya Gruzinskaya St., Bld. 1, Moscow, 123995, Russian Federation
Bibliografia
  • [1] Agterberg F. P., Statistical techniques for geological data, Tectonophysics, 1, 1964, 233–255.
  • [2] Agterberg F. P., Geomathematics. Mathematical Background and Geo-Science Applications, Elsevier Science & Technology, 1974. [3] Aitchison G. D., The strength of quasi-saturated and unsaturated soils in relation to the pressure deficiency in the pore water, in: Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, 1957, 135–139.
  • [4] Anderstand O. B., Lananyi B., Frozen Ground Engineering, Wiley, 2nd ed., 2003.
  • [5] Babu G. L. S., Rao R. S., Peter J., Evaluation of shear strength functions based on soil water characteristic curves, Journal of Testing and Evaluation, 33, 2005, 461–465.
  • [6] Baver L. D., Soil Physics, John Wiley & Sons, Inc., New York, U. S., 3rd ed., 1959.
  • [7] Bezukhov N. I., Fundamentals of the theory of elasticity, plasticity and creep, Moscow, Vysshaya shkola publishing, 1968.
  • [8] Boldyrev G. G., Idrisov I. K., Valeev D. N., Determination of parameters for soil models, Soil Mechanics and Foundation Engineering, 43, 2006, 101–108.
  • [9] Bratten J. Creep Mechanics, Springer, Berlin, 2008.
  • [10] Casagrande L., Loughney R. W., Method of strengthening and stabilizing compressible soils, United States Patent Office, 3, 1966, 386.
  • [11] Dahlin T., Svensson M., Lindh P., DC Resistivity and SASW for validation of effeiciency in soil stabilisation prior to road construction, in: Procs. EEGS’99, 1999.
  • [12] Davis J. C., Statistics and Data Analysis in Geology, Wiley, 1986.
  • [13] Davis J. C., Herzfeld U. C., Computers in Geology: 25 Years of Progress, Oxford University Press, 1993.
  • [14] Driel J. N. V., Davis J. C., Digital Geologic and Geographic Information Systems, Short Course in Geology, 10. American Geophysical Union, 2nd ed., 1995.
  • [15] Feuersänger C., Manual for Package pgfplots 2D/3D Plots in LaTeX, Version 1.5.1., 2011.
  • [16] Feuersänger C., PgfplotsTable package – Loading, rounding and formatting tables in LaTeX, 2011. Available as separate package usepackage{pgfplotstable}, as part of pgfplots.
  • [17] Feuersänger C., Programming in TeX and Library Functions from pgf and pgfplots, 2011. Available as part of pgfplots.
  • [18] Fredlund D. G., Rahardjo H., Soil Mechanics for Unsaturated Soils, John Wiley & Sons, Technology & Engineering, 1993.
  • [19] Gan J. K.-M., Fredlund D. G., Rahardjo H., Determination of the shear strength parameters of an unsaturated soil using the direct shear test, Canadian Geotechnical Journal, 25, 1988, 500–510.
  • [20] Gorokhovsky V. M., Tkachuk E. I., Modeling in engineering geology, NPI, Novocherkassk, 1980.
  • [21] Jeffrey A., Lists in TeX’s Mouth, TUGboat, 11, 1990, 237–245.
  • [22] Källén, H., Heyden A., Lindh P. Estimation of grain size in asphalt samples using digital image analysis, in: Proceedings of SPIE – The International Society for Optical Engineering, 37, 2014, 921714–921714.
  • [23] Källén H., Heyden A., Åström K., Lindh P., Measuring and evaluating bitumen coverage of stones using two different digital image analysis methods, Measurement, 84, 2016, 56–67.
  • [24] Kaputin Y. E., Yezhov A. I., Henley S., Geostatistics in mining and geological practice, Kolskiy Scientific Center, Mining Institute RAS, Apatity, 1995.
  • [25] Kern U, Extending LATEX’s color facilities: the xcolor package, 2016.
  • [26] Klaučo M., Gregorová B., Stankov U., Marković V., Lemenkova P., Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area, Open Geosciences, 5(1), 2013, 28–42.
  • [27] Knuth D. E., The Art of Computer Programming, chapter Fundamental Algorithms, 3168. Addison-Wesley, U. S., 3rd ed., 1968.
  • [28] Knuth D. E., Computers & Typesetting, chapter The TeXbook, Addison-Wesley, U. S., Reading, MA, 1984.
  • [29] Knuth D. E., Computers & Typesetting, chapter TeX: The Program. Addison-Wesley, Reading, MA, 1986.
  • [30] Knuth D. E., The New Versions of TeX and METAFONT, TUGboat, 10, 1989, 325–328,. Reprinted as chapter 29 of Digital Typography.
  • [31] Knuth D. E., The future of TeX and METAFONT, Bijlage GG, 90, 1990, 145–145. Bijlage GG Reprint MAPS 5 (90.2).
  • [32] Knuth D. E., Selected Papers on Analysis of Algorithms. Lecture Notes, Stanford, CA: Center for the Study of Language and Information CSLI, 2000.
  • [33] Knuth D. E., Selected Papers on Computer Languages. Lecture Notes, Stanford, CA: Center for the Study of Language and Information CSLI, 2003.
  • [34] Lemenkov V. A., The Project of Engineering and Geological Survey for the Development of Railway Infrastructure in Zabaykalsky Krai, Russian State Geological Prospecting University, Moscow, Russia, 2015. Licenciate Thesis.
  • [35] Lemenkov V. A., Die Profiltypen der Richtbohren und Methoden Ihrer Gestaltung bei der Ingenieurgeologischen Erkundung, in: Actual Directions of Scientific Researches of the XXI Century: Theory and Practice, 4, 2016, 5–9.
  • [36] Lemenkov V. A., Die regionale hydrogeologische Verh ̈altnisse und deren Ein- fluss auf die bautechnischen Eigenschaften, in: Actual Directions of Scientific Researches of the XXI Century: Theory and Practice, 4, 2016, 9–13.
  • [37] Lemenkov V. A., Analysis of the Effects of the Mineral Soil Composition on the Cohesion Between its Structural Elements, in: Modern Solutions to Scientific and Industrial Problems in Chemistry and Petrochemistry, 2018, 617–625.
  • [38] Lemenkov V. A., Computing Deflection and Compressibility of the Clay Loams for the Problem of the Construction Works in the Northern Tyumen (Bovanenkovo-Sabetta Geologic Cross Section), in: Geography in the Modern World: Progress and New Priorities, 2018, 506–509.
  • [39] Lemenkov V. A., Deformation properties of the clay soil heave with a case study of sandy loam and clay by compression tests, in: Development Strategy of the Geological Exploration of the Subsoils: Present and Future, 2, 2018, 258– 259.
  • [40] Lemenkov V. A., Determination of correlation in deformation, strength and viscosity of the frozen soils through external loads by uniaxial compression, in: Current Trends and Innovations in Science and Industry, 2018, 64–65.
  • [41] Lemenkov V. A., Laboratory tests of the different types of soils for compressibility by the compression and filtration device ‘Odometer KFP-2-40 (60)’, in: Science, Education and Innovation in the Modern World, 2, 2018, 275–281.
  • [42] Lemenkov V. A., Methods of the Determining Physico-Mechanical Parameters of the Frozen Ground Using Uniaxial Compression Strength, in: Innovation of technical solutions in mechanical engineering and transport, 2018, 202–206
  • [43] Lemenkov V. A., Variations in porosity and deformation in dehydrated loam samples, in: Development Strategy of the Geological Exploration of the Subsoils: Present and Future, 2, 2018, 256–257.
  • [44] Lemenkova P., R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation, Journal of Marine Technology and Environment, 2, 2018, 35–42.
  • [45] Lemenkova P., AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis, GeoScience Engineering, 65, 2019, 1–22.
  • [46] Lemenkova P., Geospatial Analysis by Python and R: Geomorphology of the Philippine Trench, Pacific Ocean, Electronic Letters on Science and Engineering, 15, 2019, 81–94.
  • [47] Lemenkova P., GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean, Geographia Technica, 14, 2019, 39–48.
  • [48] Lemenkova P., Numerical Data Modelling and Classification in Marine Geology by the SPSS Statistics, International Journal of Engineering Technologies, 5, 2019, 90–99.
  • [49] Lemenkova P., Plotting Ternary Diagrams by R Library ggtern for Geological Modelling, Eastern Anatolian Journal of Science, 5, 2019, 16–25.
  • [50] Lemenkova P., Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language, Geodesy and Cartography, 45, 2019, 57–84.
  • [51] Lemenkova P., Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean, Reports on Geodesy and Geoinformatics, 108, 2019, 9–22. [52] Leminen V., Tanninen P., Matthews S., and Niini A. The Effect of Heat Input on the Compression Strength and Durability of Press-formed Paperboard Trays. Procedia Manufacturing, 47:6–10, 2020. [53] Lindh P. Optimising binder blends for shallow stabilisation of fine-grained soils. In Proceedings of the Institution of Civil Engineers Ground Improvement, volume 5, pages 23–34, 2001.
  • [54] Lindh P., Compaction- and strength properties of stabilised and unstabilised fine-grained tills, Lund University, Lund, Sweden, 2004. Doctoral Thesis.
  • [55] Lindh P., Dahlin T., Svensson M., Comparisons Between Different Test Methods for Soil Stabilisation, in: GeoEng 2000, 2000, 1–7.
  • [56] Lindh P., Winter M. G., Sample preparation effects on the compaction properties of Swedish fine-grained tills, Quarterly Journal of Engineering Geology and Hydrogeology, 36, 2003, 321–330.
  • [57] Merriam D. F., Random Processes in Geology, Springer-Verlag Berlin Heidelberg, 1st ed., 1976.
  • [58] Mills I., Cvitaš T., Homann K., Kallay N., Kuchitsu K., Quantities, Units and Symbols in Physical Chemistry, Blackwell Science, 2nd ed., 1996.
  • [59] Pincus H. J., Statistical methods applied to the study of rock fractures, Bulletin of the Geological Society of America, 62, 1951, 81–130.
  • [60] Porotov G. S., Mathematical modeling methods in geology: Textbook, SPbGGU (TU) Press, St. Petersburg, 2006.
  • [61] Rathmayer H., Frost in Geotechnical Engineering, in: International Symposium, 2. Espoo: VTT, 1989.
  • [62] Ridley A. M., Burland J. B., A new instrument for the measurement of soil moisture suction, Géotechnique, 43, 1993, 321–324.
  • [63] Ryden N., Dahlen U., Lindh P., Jakobsson A., Impact non-linear reverberation spectroscopy applied to non-destructive testing of building materials, The Journal of the Acoustical Society of America, 140, 2016, 3327–3327.
  • [64] Schenke H. W., Lemenkova P., Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See, Hydrographische Nachrichten, 81, 2008, 16–21.
  • [65] Tantau T., TikZ and pgf manual, Manual for Version 2.10-cvs, 2012.
  • [66] Statens vegvesen, Håndbok 2016 – Geoteknikk i vegbygging, Innholdsfortegnelse. Oslo: Trykk, 2010.
  • [67] West D. R. F., Ternary Equilibrium Diagrams, Springer, 2nd ed., 1982.
  • [68] West D. R. F., Ternary Phase Diagrams in Materials Science (Matsci), CRC Press, 3rd ed., 2017.
  • [69] Yokoi H., Relationship between soil cohesion and shear strength, Soil Science and Plant Nutrition, 14, 1968, 89–93.
  • [70] Zhou S., Zhang S., Shen J., Guo W., Effect of cattle manure ash’s particle size on compression strength of concrete, Case Studies in Construction Materials, 10, 2019, 1–13.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb014da8-4283-460c-8a65-a39923d22202
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.