PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Mining-induced Land Subsidence Detected by Sentinel-1 SAR Images:An Example from the Historical Tadeusz Kościuszko Salt Mine at Wapno, Greater Poland Voivodeship, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are many mines in Poland that have been in operation for over 100 years, with the Tadeusz Kościuszko mine being a large salt mine in Wapno, northern Poland. The mine was closed in 1977 due to the greatest catastrophe in the history of Polish mining, but in the first days of 2021, a very large hole has been created in this area due to land subsidence. This article uses InSAR technology with Sentinel-1 images to determine settlement and ongoing deformation in this mine. The study results are useful for policymakers, managers, and authorities because land subsidence has caused serious and dangerous effects on people living in the area. The results processed by the Persistent Scatterer InSAR (PSInSAR) method with the Sentinel Application Platform and the Stanford Method for Persistent Scatterers software packages show that deformation in the Wapno village area has been detected in both residential and non-residential areas, with maximum subsidence of up to −19 mm/yr. The subsidence in the mine reaches −12 mm/yr, and that at surrounding area range from 0 to −18.8 mm/yr.
Słowa kluczowe
Rocznik
Tom
Strony
41--52
Opis fizyczny
Bibliogr., 28 poz., rys., tab., wykr., zdj.
Twórcy
  • AGH University of Science and Technology, Kraków, Poland
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
autor
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • Institute of Geo-Engineering, Clausthal University of Technology, Clausthal, Germany
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • 1. Kowalczyk Andrzej, Witkowski Andrzej, Różkowski Andrzej, Szczepański Andrzej, Rogoż Marek, Przybyłek Jan, and S. Stanisław., 2010; What Polish mining owes to Polish hydrogeology, 58; 9/1; 774-786.
  • 2. https://www.abandonedspaces.com/uncategorized/salt.html; 2020 Makeenko, V.; The Salt Mine, Which destroyed a Village in 1977.
  • 3. https://www.pgi.gov.pl/osuwiska/sopo-aktualnosci/szczegoly/12833-sol-niszczy-wapnozapadlisko-nad-stara-kopalnia.html; 2/3/2021 Geozagrożeń, z.C.; Sól niszczy Wapno –zapadlisko nad starą kopalnią.
  • 4. Pawluszek-Filipiak, K. and A.J.E.J.o.R.S. Borkowski, 2021; Monitoring mining-induced subsidence by integrating differential radar interferometry and persistent scatterer techniques, 54; sup1; 18-30.
  • 5. Jung Hahn Chul, Kim Sang-Wan, Jung Hyung-Sup, M.K. Duck, and W. Joong-Sun, 2007; Satellite observation of coal mining subsidence by persistent scatterer analysis, Engineering Geology; 92; 1-2; 1-13.
  • 6. Wempen, J.M.J.I.J.o.M.S. and Technology, 2020; Application of DInSAR for short period monitoring of initial subsidence due to longwall mining in the mountain west United States, 30; 1; 33-37.
  • 7. Berardino Paolo, Fornaro Gianfranco, Lanari Riccardo, and S. Eugenio., 2002; A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Transactions on geoscience remote sensing; 40; 11; 2375-2383; 10.1109/TGRS.2002.803792.
  • Hooper Andrew, Segall P, and Zebker Howard, 2007; Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos, Journal of Geophysical Research: Solid Earth; 112; B7; https://doi.org/10.1029/2006JB004763.
  • 9. Hooper Andrew, Zebker Howard, Segall Paul, and K. Bert., 2004; A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophysical research letters 31; 23; https://doi.org/10.1029/2004GL021737.
  • 10. Hooper, A., D.P.S. Bekaert, K. Spaans, and M. Arıkan, 2012; Recent advances in SAR interferometry time series analysis for measuring crustal deformation, Tectonophysics; 514-517; 1-13; 10.1016/j.tecto.2011.10.013.
  • 11. Bui Luyen Khac, Featherstone WE, and F. MS, 2020; Disruptive influences of residual noise, network configuration and data gaps on InSAR-derived land motion rates using the SBAS technique, Remote Sensing of Environment; 247; 111941; https://doi.org/10.1016/j.rse.2020.111941.
  • 12. Bui Khac Luyen , Le V.V. Phong, Dao Phuong Duc, Long Nguyen Quoc, Pham Hai Van, Tran Hong Ha, and X. Lei., 2021; Recent land deformation detected by Sentinel-1A InSAR data (2016–2020) over Hanoi, Vietnam, and the relationship with groundwater level change, GIScience Remote Sensing; 58; 2; 161-179; https://doi.org/10.1080/15481603.2020.1868198.
  • 13. Long Nguyen Quoc, Van Anh Tran, Luyen Bui Khac, 2021; Determination of Ground Subsidence by Sentinel-1 SAR Data (2018-2020) over Binh Duong Quarries, Vietnam, VNU Journal of Science: Earth Environmental Sciences 37; 2; https://doi.org/10.25073/2588-1094/vnuees.4605.
  • Nam Bui Xuan, Van Anh Tran, Bui Luyen Khac, Long Nguyen Quoc, Ha Thi Le Thu, and G. Ropesh.; 2021; Mining-Induced Land Subsidence Detection by Persistent Scatterer InSAR and Sentinel-1: Application to Phugiao Quarries, Vietnam. in Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining. Springer, 108; 18-38; http://doi.org/10.1007/978-3-030-60269-7_2.
  • 15. Perski, Z., 1998; Applicability of ERS-1 and ERS-2 InSAR for land subsidence monitoring in the Silesian coal mining region, Poland, International Archives of Photogrammetry and Remote Sensing; 32; 555-558.
  • 16. Krawczyk, A. and Z. Perski, 2000; Zastosowanie satelitarnej interferometrii radarowej na terenach eksploatacji rud miedzi w LGOM, XI Kongres ISM, Kraków.
  • 17. Perski, Z., G. Ketelaar, and M.J.A.F. Mróz, Kartografii i Teledetekcji, 2006; Interpretacja danych Envisat/ASAR o przemiennej polaryzacji na obszarach zurbanizowanych w kontekście charakterystyki stabilnych rozpraszaczy (persistent scatterers), 16.
  • 18. Perski Zbigniew, Hanssen Ramon, Wojcik Antoni, and W. Tomasz., 2009; InSAR analyses of terrain deformation near the Wieliczka Salt Mine, Poland, Engineering Geology; 106; 1-2; 58-67.
  • 19. Wojciechowski, T., Z. Perski, and A.J.P.G. Wójcik, 2008; Wykorzystanie satelitarnej interferometrii radarowej do badań osuwisk w polskiej części Karpat, 56; 12; 1088-1091;
  • 20. Graniczny Marek, Kowalski Zbigniew, Jureczka Janusz, and C. Magdalena.; 2006; Wykorzystanie technologii PSinSAR dla obserwacji przemieszczeń powierzchni terenu na przykładzie Górnego Śląska. in Mat. Symp. 127-129.
  • 21. Malinowska, A., R. Hejmanowski, W.T. Witkowski, and A. Guzy, 2018; Mapping of slow vertical ground movement caused by salt cavern convergence with sentinel-1 tops data, Archives of Mining Sciences; 63; 2; 383-396; 10.24425/122453.
  • 22. Mirek, K., 2009; Interferometric Synthetic Aperture Radar InSAR–method for study and monitoring subsidence over mining areas, Polish Journal of Environmental Studies; 18; 3A; 270.
  • 23. Urbaniak, M.J.O.D.K., 2018; Kompleks młyna solnego i magazynów byłej kopalni soli w Wapnie. Uwarunkowania i przesłanki do ochrony XX-wiecznych budowli poprzemysłowych jako trwałej ruiny.
  • 24. ttps://pl.wikipedia.org/wiki/Kopalnia_Soli_im._Tadeusza_Ko%C5%9Bciuszki_w_Wapnie; 28-07-2019 22:08 Wikipedia; Kopalnia Soli im. Tadeusza Kościuszki w Wapnie
  • 25. Małachowski, K., 2018; The biggest surface mining disaster in Poland and its economic results, European Journal of Service Management; 28; 247-255; https://doi.org/10.18276%2Fejsm.2018.28%2F2-31.
  • 26. https://plus.gloswielkopolski.pl/o-katastrofie-w-kopalni-soli-w-wapnie-nie-wolno-bylomowic-ani-pisac/ar/12399754; 19/8/2017 Dziuma, M.; O katastrofie w kopalni soli w Wapnie nie wolno było mówić ani pisać.
  • 27. Tran, V. A., Bui, X. N., Nguyen, Q. L., & Tran, T. A. (2020). Land Subsidence Detection in Tan My-Thuong Tan Open Pit Mine and Surrounding Areas by Time Series of Sentinel1 Images. Inżynieria Mineralna. DOI 10.29227/IM-2020-02-22
  • 28. Chen, C.W. and H.A. Zebker, 2000; Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms, Journal of the Optical Society of America A; 17; 3; 401-414; http://doi.org/10.1364/JOSAA.17.000401.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eaff3db7-512a-4603-ac9e-2188e7f7802e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.