Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we are concerned with the following coupled Choquard type system with weighted potentials [formula] where N ≥ 3, μ1, μ2, β > 0 and V1(x), V2(x) are nonnegative functions. Via the variational approach, one positive ground state solution of this system is obtained under some certain assumptions on V1(x), V2(x) and Q(x). Moreover, by using Hardy’s inequality and one Pohozǎev identity, a non-existence result of non-trivial solutions is also considered.
Czasopismo
Rocznik
Tom
Strony
337--354
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Chongqing Jiaotong University, College of Mathematica and Statistics, Chongqing 400074, China
autor
- Chongqing Jiaotong University, College of Mathematica and Statistics, Chongqing 400074, China
autor
- Chongqing Jiaotong University, College of Mathematica and Statistics, Chongqing 400074, China
autor
- China University of Mining and Technology, School of Mathematics, Xuzhou 221116, China
Bibliografia
- [1] A.S. Alexandrov, J.T. Devreese, Advances in Polaron Physics, Springer Series in Solid-State Sciences, vol. 159, Springer, Berlin, 2010.
- [2] D. Cassani, B. Ruf, C. Tarsi, Group invariance and Pohozaev identity in Moser-type inequalities, Comm. Contemp. Math. 15 (2013), 1250054.
- [3] D. Cassani, J. Van Schaftingen, J. Zhang, Groundstates for Choquard type equations with Hardy–Littlewood–Sobolev lower critical exponent, Proc. Roy. Soc. Edinb. 150 (2020), 1377–1400.
- [4] Y. Ding, F. Gao, M. Yang, Semiclassical states for Choquard type equations with critical growth: critical frequency case, Nonlinearity 33 (2020), 6695–6728.
- [5] F. Gao, M. Yang, A strongly indefinite Choquard equation with critical exponent due to the Hardy–Littlewood–Sobolev inequality, Comm. Contemp. Math. 20 (2018), 1750037.
- [6] F. Gao, M. Yang, The Brezis–Nirenberg type critical problem for the nonlinear Choquard equation, Sci. China Math. 61 (2018), 1219–1242.
- [7] F. Gao, H. Liu, V. Moroz, M. Yang, High energy positive solutions for a coupled Hartree system with Hardy–Littlewood–Sobolev critical exponents, J. Differential Equations 287 (2021), 329–375.
- [8] F. Gao, E.D. da Silva, M. Yang, J. Zhou, Existence of solutions for critical Choquard equations via the concentration-compactness method, Proc. Roy. Soc. Edinb. 150 (2020), 921–954.
- [9] E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies Appl. Math. 57 (1977), 93–105.
- [10] E.H. Lieb, M. Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, 2001.
- [11] C. Mercuri, V. Moroz, J. Van Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger–Poisson–Slater equations at the critical frequency, Calc. Var. Partial Differential Equations 55 (2016), Article no. 146.
- [12] V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent, Comm. Contemp. Math. 17 (2015), 1550005.
- [13] V. Moroz, J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015), 6557–6579.
- [14] V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265 (2013), 153–184.
- [15] V. Moroz, J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl. 19 (2017), 773–813.
- [16] Z. Shen, F. Gao, M. Yang, On critical Choquard equation with potential well, Discrete Contin. Dynam. Syst. 38 (2018), 3567–3593.
- [17] J. Wang, J. Shi, Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction, Calc. Var. Partial Differential Equations 56 (2017), Article no. 168.
- [18] J. Wang, W. Yang, Normalized solutions and asymptotical behavior of minimizer for the coupled Hartree equations, J. Differential Equations 265 (2018), 501–544.
- [19] J. Wang, Y. Dong, Q. He, L. Xiao, Multiple positive solutions for a coupled nonlinear Hartree type equations with perturbations, J. Math. Anal. Appl. 450 (2017), 780–794.
- [20] H. Wu, Positive ground states for nonlinearly coupled Choquard type equations with lower critical exponents, Boundary Value Problems (2021), Article no. 13.
- [21] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
- [22] M. Yang, Semiclassical ground state solutions for a Choquard type equation in R2 with critical exponential growth, ESAIM: Cont. Opt. Calc. Var. 24 (2018), 177–209.
- [23] M. Yang, Y. Wei, Y. Ding, Existence of semiclassical states for a coupled Schrödinger system with potentials and nonlocal nonlinearities, Z. Angew. Math. Phys. 65 (2014), 41–68.
- [24] M. Yang, F. Zhao, S. Zhao, Classification of solutions to a nonlocal equation with double Hardy–Littlewood–Sobolev critical exponents, Discrete Contin. Dyn. Syst. 41 (2021), 5209–5241.
- [25] S. You, Q. Wang, P. Zhao, Positive least energy solutions for coupled nonlinear Choquard equations with Hardy–Littlewood–Sobolev critical exponent, Topol. Methods Nonlinear Anal. 53 (2019), 623–657.
- [26] S. You, P. Zhao, Q. Wang, Positive ground states for coupled nonlinear Choquard equations involving Hardy–Littlewood–Sobolev critical exponent, Nonlinear Analysis: Real World Applications 48 (2019), 182–211.
- [27] Y. Zheng, C.A. Santos, Z. Shen, M. Yang, Least energy solutions for coupled Hartree system with Hardy–Littlewood–Sobolev critical exponents, Commun. Pure Appl. Math. 19 (2020), 329–369.
- [28] S. Zhou, Z. Liu, J. Zhang, Groundstates for Choquard type equations with weighted potentials and Hardy–Littlewood–Sobolev lower critical exponent, Adv. Nonlinear Anal. 11 (2022), 141–158.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eaf7c446-07b0-4cc6-a941-47fd46a12093