Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An analytical solution to the problem of time-fractional heat conduction in a sphere consisting of an inner solid sphere and concentric spherical layers is presented. In the heat conduction equation, the Caputo time-derivative of fractional order and the Robin boundary condition at the outer surface of the sphere are assumed. The spherical layers are characterized by different material properties and perfect thermal contact is assumed between the layers. The analytical solution to the problem of heat conduction in the sphere for time-dependent surrounding temperature and for time-space-dependent volumetric heat source is derived. Numerical examples are presented to show the effect of the harmonically varying intensity of the heat source and the harmonically varying surrounding temperature on the temperature in the sphere for different orders of the Caputo time-derivative.
Rocznik
Tom
Strony
179--186
Opis fizyczny
Bibliogr. 31 poz., rys., wykr., tab.
Twórcy
autor
- Institute of Mathematics, Czestochowa University of Technology, 21 Armii Krajowej Ave., 42-201 Częstochowa, Poland
autor
- Institute of Mathematics, Czestochowa University of Technology, 21 Armii Krajowej Ave., 42-201 Częstochowa, Poland
Bibliografia
- [1] A. Haji-Sheikh and J.V. Beck, “Temperature solution in multi-dimensional multi-layer bodies”, International Journal of Heat and Mass Transfer 45, 1865-1877 (2002).
- [2] X. Lu, P. Tervola, and M. Viljanen, “Transient analytical solution to heat conduction in composite circular cylinder”, International Journal of Heat and Mass Transfer 49, 341-348 (2006).
- [3] M.N. Özişik, Heat Conduction, Wiley, New York, 1993.
- [4] X. Lu and M. Viljanen, “An analytical method to solve heat conduction in layered spheres with time-dependent boundary conditions”, Physics Letters A 351, 274-282 (2006).
- [5] U. Siedlecka, “Radial heat conduction in a multilayered sphere”, Journal of Applied Mathematics and Computational Mechanics 13 (4), 109-116 (2014).
- [6] P.K. Jain, S. Singh, and Rizwan-uddin, “An exact analytical solution for two-dimensional, unsteady, multilayer heat conduction in spherical coordinates”, International Journal of Heat and Mass Transfer 53, 2133-2142 (2010).
- [7] S. Singh, P.K. Jain, and Rizwan-uddin, “Analytical solution of time-dependent multilayer heat conduction problems for nuclear applications”, Proceedings of the 1st International Nuclear and Renewable Energy Conference (INREC10), Amman, 21-24 (2010).
- [8] Y. Bayat, M. Ghannad, and H. Torabi, “Analytical and numerical analysis for the FGM thick sphere under combined pressure and temperature loading”, Archive of Applied Mechanics 82 (2), 229-242 (2012).
- [9] S.P. Pawar, K.C. Deshmukh, and G.D. Kedar, “Dynamic behavior of functionally graded sphere subjected to thermal load”, Journal of Mathematics 9 (5), 43‒54 (2014).
- [10] Y. Povstenko, Fractional Thermoelasticity, Springer, New York, 2015.
- [11] Y. Povstenko, Linear Fractional Diffusion-Wave Equation for Scientists and Engineers, Birkhäuser, New York, 2015.
- [12] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- [13] M. Klimek, On Solutions of Linear Fractional Differential Equations of a Variational Type, The Publishing Office of Czestochowa University of Technology, Czestochowa, 2009.
- [14] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag Berlin Heidelberg, 2010.
- [15] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- [16] A. Dzieliński, D. Sierociuk, and G. Sarwas, “Some applications of fractional order calculus”, Bull. Pol. Ac.: Tech. 58 (4), 583-592 (2010).
- [17] D. Sierociuk, A. Dzieliński, G. Sarwas, I. Petras, I. Podlubny, and T. Skovranek, “Modelling heat transfer in heterogeneous media using fractional calculus”, Phil. Trans. R. Soc. A 371 (1990), 20120146 (2013).
- [18] W.E. Raslan, “Application of fractional order theory of thermoelasticity to a 1D problem for a spherical shell”, Journal of Theoretical and Applied Mechanics 54 (1), 295-304 (2016).
- [19] Y. Povstenko, “Fractional heat conduction in an infinite medium with a spherical inclusion”, Entropy 15, 4122-4133 (2013).
- [20] U. Siedlecka and S. Kukla, “A solution to the problem of time-fractional heat conduction in a multi-layer slab”, Journal of Applied Mathematics and Computational Mechanics 14 (3), 95-102 (2015).
- [21] T.H. Ning and X.Y. Jiang, “Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation”, Acta Mechanica Sinica 27 (6), 994-1000 (2011).
- [22] Y. Povstenko, “Central symmetric solution to the Neumann problem for a time-fractional diffusion-wave equation in a sphere”, Nonlinear Analysis: Real World Applications 13, 1229-1238 (2012).
- [23] Y. Povstenko, “Solutions to time-fractional diffusion-wave equation in spherical coordinates”, Acta Mechanica et Automatica 5 (2), 108-111 (2011).
- [24] L.S. Lucena, L.R. da Silva, L.R. Evangelista, M.K. Lenzi, R. Rossato, and E.K. Lenzi, “Solutions for a fractional diffusion equation with spherical symmetry using Green function approach”, Chemical Physics 344, 90-94 (2008).
- [25] E.K. Lenzi, R.S. Mendes, G. Gonçalves, M.K. Lenzi, and L.R. da Silva, “Fractional diffusion equation and Green function approach: Exact solutions”, Physica A 360, 215-226 2006).
- [26] I.A. Abbas, “Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity”, Applied Mathematical Modelling 39, 6196-6206 (2015).
- [27] M. Ishteva, R. Scherer, and L. Boyadjiev, “On the Caputo operator of fractional calculus and C-Laguerre functions”, Mathematical Sciences Research Journal 9 (6), 161-170 (2005).
- [28] I. Podlubny, “Geometric and physical interpretation of fractional integration and fractional differentiation”, Fractional Calculus and Applied Analysis, 5 (4), 367-386 (2002).
- [29] H.J. Haubold, A.M. Mathai, and R.K. Saxena, “Mittag-Leffler functions and their applications”, Journal of Applied Mathematics, paper ID 298628 (2011).
- [30] M. Žecová and J. Terpák, “Heat conduction modeling by using fractional-order derivatives”, Applied Mathematics and Computation 257, 365-373 (2015).
- [31] Wolfram Research, Inc., Mathematica, Version 5.2, Champaign, IL, 2005.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eaf31eba-9a43-421e-a41f-1eefe3ef50cb