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Abstract. An analytical solution to the problem of time-fractional heat conduction in a sphere consisting of an inner solid sphere and concentric 
spherical layers is presented. In the heat conduction equation, the Caputo time-derivative of fractional order and the Robin boundary condition 
at the outer surface of the sphere are assumed. The spherical layers are characterized by different material properties and perfect thermal contact 
is assumed between the layers. The analytical solution to the problem of heat conduction in the sphere for time-dependent surrounding tempera-
ture and for time-space-dependent volumetric heat source is derived. Numerical examples are presented to show the effect of the harmonically 
varying intensity of the heat source and the harmonically varying surrounding temperature on the temperature in the sphere for different orders 
of the Caputo time-derivative.
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analytical solution to the problem for thermal and mechanical 
properties of the sphere was obtained in the form of power 
functions of the radial direction. Thermal stresses in a sphere 
of a functionally graded material were also considered by 
Pawar et al. [9]. Transient temperature distribution was deter-
mined by assuming that the material properties of the sphere 
were exponential functions of the radial direction.

The parabolic differential equation of heat conduction, 
derived under the framework of the classical theory of heat 
conduction is based on the local Fourier law. Non-local gener-
alizations of the Fourier law lead to non-classical theories, in 
which the parabolic equation is replaced by a time-fractional 
and/or space-fractional heat conduction differential equation 
[10]. In these fractional differential equations, different kinds of 
derivatives of fractional order are used (the Riemann-Liouville 
derivative, the Caputo derivative and the Grűnwald-Letnikov 
derivative). Moreover, the boundary conditions may also in-
clude the fractional derivatives. The fundamentals of fractional 
calculus and of the theory of fractional differential equations are 
given in [11–15]. Some applications of fractional order calculus 
to modelling of real-world phenomena are presented in [16–18].

Heat conduction problems formulated under the frame-
work of the non-classical theories in the spherical coordinates 
with fractional Caputo or Riemann-Liouville derivatives were 
studied in [19, 20]. An approximate analytical solution of 
time-fractional heat conduction in a composite medium con-
sisting of an infinite matrix and a spherical inclusion is pre-
sented by Povstenko in [19]. The perfect thermal contact was 
realized by the conditions of equality of temperatures and heat 
fluxes at the boundary surfaces, wherein the heat fluxes are 
expressed by a Riemann-Liouville fractional derivative. An 
analytical solution to the problem of time-fractional heat con-
duction in a multilayered slab was presented by Siedlecka and 
Kukla in [20]. Ning and Jiang [21] use the Laplace transform 
and the method of variable separation to determine an analytical 

1. Introduction

Heat conduction problems in layered slabs, layered cylinders, 
and layered spheres modelled according to Fourier’s law by 
a parabolic differential equation have been considered by many 
authors, for example in [1–3], where analytical solutions to 
the problems in the form of eigenfunction expansions were 
presented. Heat conduction in layered bodies in spherical co-
ordinates was recently investigated in [4–10]. An analytical 
solution to the problem of heat conduction in a multilayered 
sphere with time-dependent boundary conditions was derived 
by Lu and Viljanen in [4]. The solution was obtained using 
the Laplace transform wherein an approximate inverse La-
place transform was determined by using a residue theorem. 
An exact solution of the radial heat conduction problem in 
a hollow multilayered sphere was presented by Siedlecka in 
[5]. The considerations concern heat conduction modeled by 
the parabolic differential equation. The solution was obtained 
using the Green’s function method. An analytical series solu-
tion for a two-dimensional, transient boundary-value problem 
for multilayered heat conduction in spherical coordinates has 
been presented by Jain et al. in [6]. In the formulation of the 
problem, time-independent volumetric heat sources in the con-
centric layers were assumed. The obtained solution can be 
used to determine the temperature distribution in full sphere, 
hemisphere, spherical wedge, and spherical cone. A similar 
approach was also applied in [7] to one-dimensional heat con-
duction problems for nuclear applications. The steady-state 
temperature distribution in the functionally graded sphere, 
subjected to temperature gradient and internal pressure, was 
investigated by Bayat et al. in [8]. Temperature distribution 
was used to determine the thermal stresses in the sphere. An 
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solution of the time-fractional equation for three-dimensional 
heat conduction in spherical coordinates.

From a mathematical point of view, the heat conduction 
equation and the diffusion equation are identical, which means 
that the same methods can be used to determine their solutions. 
In [22], Povstenko presents a solution of the diffusion-wave 
time-fractional equation with a source term. The solution is ex-
pressed by fundamental solutions, which are also derived. The 
Neumann problem for time-fractional differential equation in 
a sphere was considered by Povstenko in [23]. The presented re-
sults of numerical computations show the solutions as functions 
of distance from the center of the sphere for various orders of 
the time-fractional derivative. The fractional diffusion problems 
considered in [24, 25] were solved using the Green’s function 
method. Lucena et al. [24] considered two diffusion problems 
– the first with inhomogeneous time-dependent boundary con-
ditions and the second for diffusion with external force. Radial 
changes in the diffusion coefficient and the external force were 
assumed. In [25], a fractional diffusion equation with a spatial 
time-dependent coefficient and with external force was investi-
gated. A numerical solution to the problem was obtained using 
a finite difference method. In [26], Abbas applied fractional 
order theory to study thermoelastic diffusion in an infinite me-
dium with a spherical cavity using the Laplace transformation 
and the eigenvalue approach.

In this paper, time-fractional heat conduction in a multilay-
ered solid sphere is studied. A space-time dependent volumetric 
inner heat source in the sphere, time-dependent ambient tem-
perature, and perfect thermal contact at boundaries of the layers 
are assumed. An exact solution to the radial heat conduction 
equation with the Caputo time-derivative in the form of an ei-
genfunction expansion is presented.

2. Formulation of the problem

Consider the radial heat conduction in a solid sphere consisting 
of an inner solid sphere and n ¡ 1 concentric layers. The 
cross-section of the sphere is shown in Fig. 1. The time-frac-
tional differential equation in spherical coordinates governing 
the temperature Ti(r, t) in the i-th layer is given in [19]
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where i  is a constant thermal conductivity, ia  is 
a constant thermal diffusivity,  ,iq r t  is volumetric energy 

generation, ir  is outer radius of the i -th layer  
( 0 0, nr r b  ) and   denotes the fractional order of  
a Caputo derivative with respect to time t . The Caputo 
fractional derivative is defined by [27] 
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where  1 , 1,2,...m m m N     . The geometric and 
physical interpretation of the fractional derivatives are 
given in [28]. 
 

 
Fig. 1. Cross-section of a solid multilayered sphere. 

The condition at the center, the mathematical boundary 
condition on the outer surface of the sphere and the 
mathematical conditions of perfect thermal contact at 
interfaces are [19] 
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where a  is the heat transfer coefficient and T  is the 
ambient temperature. We assume the initial temperature in 
each layer as 

      1,0 , , , 1,...,i i i iT r f r r r r i n    a
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where a  is the heat transfer coefficient and T  is the 
ambient temperature. We assume the initial temperature in 
each layer as 
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 (1)

where λi is the constant thermal conductivity, ai is the constant 
thermal diffusivity, qi(r, t) is the volumetric energy generation, 
ri is the outer radius of the i-th layer (r0 = 0, rn = b), and α de-
notes the fractional order of a Caputo derivative with respect 
to time t. The Caputo fractional derivative is defined in [27]
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where m ¡ 1 < α < m,  m 2 N = {1, 2, …}. The geometric and 
physical interpretation of the fractional derivatives are given 
in [28].

The condition at the center, the mathematical boundary con-
dition on the outer surface of the sphere, and the mathematical 
conditions of perfect thermal contact at interfaces are [19]:
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where a  is the heat transfer coefficient and T  is the 
ambient temperature. We assume the initial temperature in 
each layer as 

      1,0 , , , 1,...,i i i iT r f r r r r i n    a. (7a)
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In order to transform the non-homogeneous boundary con-
dition (6) into a homogeneous one, we assume the temperature 
Ti(r, t) in the form of a sum:
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where θi(r, t) are the newly-searched functions. Next, to obtain 
a differential equation with constant coefficients, we introduce 
the functions:
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Combining the transformations (8, 9), we obtain the relationship 
between the functions Ti(r, t) and Vi(r, t) in the form of:
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In (10) we have: r 2 (0, r1] for i = 1 and r 2 [ri –1, ri] for 
i = 2, …, n.

Taking into account functions Ti(r, t), given by (10), into 
(1) and conditions (3–7), the formulation of the problem for 
functions Vi(r, t) is received. The fractional differential equa-
tion with constant coefficients and the homogeneous boundary 
conditions are:
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The values of parameter β will be chosen in a way that non-zero 
solutions of problem (18–22) exist.

Functions Φi(r), satisfying differential equation (18), is as-
sume in the form of:
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The values of parameter   will be chosen such that non-
zero solutions of problem (18-22) exist. 

Functions  i r , satisfying differential equation (18), 
we assume in the form 
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i n
      


 

where ,i iA B  are unknown constants and i ia  . 
Substituting the functions (23) into conditions (19-22), we 
obtain the system of 2n  linear equations with respect to the 
constants iA , iB , 1,...,i n . The equation system can be 
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The non-zero solution of (24) exists for those values of 
 , for which the determinant of the matrix C  vanishes, 
i.e. 
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Equation (25) is then solved numerically with respect to 
For determined values k , 1,2,...k  , the corresponding 
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Substituting function  ,iV r t  given by (17) into (11) 
and by using the orthogonality condition (27), the equation 
for the function  k t  is obtained 
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This equation is complemented by the initial conditions 
which are obtained on the basis of (16-17) and the 
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constants iA , iB , 1,...,i n . The equation system can be 
written in the matrix form 

 Cd 0  

where 
 1 1 2 2 1 1... T

n n n nA B A B A B A B d  

and 
2 2i j n n

c


  C = . The non-zero elements of matrix C  

are: 11 1c  ,  2 ,2 1 cosi i i ic R  ,  2 ,2 sini i i ic R ,  

2 ,2 1 1i ic    , 2 1,2 1
1sin cosi i i i i i
i i

c R R
r

 
     , 

2 1,2
1cos sini i i i i i
i i

c R R
r

 
   ,  1

2 1,2 1
i

i i
i i i

c
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1 1
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i i
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n n n n

ac R R
r
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,  

where 1i i iR r r  . 

The non-zero solution of (24) exists for those values of 
 , for which the determinant of the matrix C  vanishes, 
i.e. 

 det 0C  

Equation (25) is then solved numerically with respect to 
For determined values k , 1,2,...k  , the corresponding 
functions 

    , 1
,

,
0 otherwise

i k i i
i k

r r r r
r


   

 


 

are appointed. The functions ,i k  are given by equation 

(23) for ,
k

i i k
ia

   . The coefficients ,i iA B  occurring 

in (23) for each k  are determined by solving an equation 
system which is obtained by assuming k  , 1nB   in 
the system (24). 

It can be shown that the functions ,i k  satisfy the 
orthogonality condition in the form 
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for '
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i
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i

i k i k
i ki r

k k
r r dr

N k ka
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i i i k i i i i k i i i i k i
i i

N

A B R A B R A B R
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Substituting function  ,iV r t  given by (17) into (11) 
and by using the orthogonality condition (27), the equation 
for the function  k t  is obtained 
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1 ,
i

i
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k

k k i i k
ik r

d t
t q r t r dr

d t N






  




     

This equation is complemented by the initial conditions 
which are obtained on the basis of (16-17) and the 
orthogonality condition (27). These initial conditions are: 

- for   in the interval (0,2]: 
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the solution of (28-30) can be presented in the form 

(r)dr , (27)

where: 
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The values of parameter   will be chosen such that non-
zero solutions of problem (18-22) exist. 

Functions  i r , satisfying differential equation (18), 
we assume in the form 


     1 1cos sin ,

for 1,...,
i i i i i i ir A r r B r r

i n
      


 

where ,i iA B  are unknown constants and i ia  . 
Substituting the functions (23) into conditions (19-22), we 
obtain the system of 2n  linear equations with respect to the 
constants iA , iB , 1,...,i n . The equation system can be 
written in the matrix form 

 Cd 0  

where 
 1 1 2 2 1 1... T

n n n nA B A B A B A B d  

and 
2 2i j n n
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  C = . The non-zero elements of matrix C  

are: 11 1c  ,  2 ,2 1 cosi i i ic R  ,  2 ,2 sini i i ic R ,  

2 ,2 1 1i ic    , 2 1,2 1
1sin cosi i i i i i
i i
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2 1,2
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2 1,2 1
i

i i
i i i

c
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,  

where 1i i iR r r  . 

The non-zero solution of (24) exists for those values of 
 , for which the determinant of the matrix C  vanishes, 
i.e. 

 det 0C  

Equation (25) is then solved numerically with respect to 
For determined values k , 1,2,...k  , the corresponding 
functions 
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,
0 otherwise
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i k

r r r r
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are appointed. The functions ,i k  are given by equation 

(23) for ,
k

i i k
ia

   . The coefficients ,i iA B  occurring 

in (23) for each k  are determined by solving an equation 
system which is obtained by assuming k  , 1nB   in 
the system (24). 

It can be shown that the functions ,i k  satisfy the 
orthogonality condition in the form 
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Substituting function  ,iV r t  given by (17) into (11) 
and by using the orthogonality condition (27), the equation 
for the function  k t  is obtained 
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This equation is complemented by the initial conditions 
which are obtained on the basis of (16-17) and the 
orthogonality condition (27). These initial conditions are: 

- for   in the interval (0,2]: 
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the solution of (28-30) can be presented in the form 
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The values of parameter   will be chosen such that non-
zero solutions of problem (18-22) exist. 

Functions  i r , satisfying differential equation (18), 
we assume in the form 


     1 1cos sin ,

for 1,...,
i i i i i i ir A r r B r r

i n
      


 

where ,i iA B  are unknown constants and i ia  . 
Substituting the functions (23) into conditions (19-22), we 
obtain the system of 2n  linear equations with respect to the 
constants iA , iB , 1,...,i n . The equation system can be 
written in the matrix form 

 Cd 0  

where 
 1 1 2 2 1 1... T

n n n nA B A B A B A B d  

and 
2 2i j n n

c


  C = . The non-zero elements of matrix C  

are: 11 1c  ,  2 ,2 1 cosi i i ic R  ,  2 ,2 sini i i ic R ,  

2 ,2 1 1i ic    , 2 1,2 1
1sin cosi i i i i i
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2 1,2
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c
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,  

where 1i i iR r r  . 

The non-zero solution of (24) exists for those values of 
 , for which the determinant of the matrix C  vanishes, 
i.e. 

 det 0C  

Equation (25) is then solved numerically with respect to 
For determined values k , 1,2,...k  , the corresponding 
functions 

    , 1
,

,
0 otherwise

i k i i
i k

r r r r
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are appointed. The functions ,i k  are given by equation 

(23) for ,
k

i i k
ia

   . The coefficients ,i iA B  occurring 

in (23) for each k  are determined by solving an equation 
system which is obtained by assuming k  , 1nB   in 
the system (24). 

It can be shown that the functions ,i k  satisfy the 
orthogonality condition in the form 
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where  
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1

1
4
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Substituting function  ,iV r t  given by (17) into (11) 
and by using the orthogonality condition (27), the equation 
for the function  k t  is obtained 

       
1
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k k i i k
ik r

d t
t q r t r dr
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This equation is complemented by the initial conditions 
which are obtained on the basis of (16-17) and the 
orthogonality condition (27). These initial conditions are: 

- for   in the interval (0,2]: 
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1
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- for   in the interval (1,2]: 
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Introducing the function  
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   , 

the solution of (28-30) can be presented in the form 

4 

The values of parameter   will be chosen such that non-
zero solutions of problem (18-22) exist. 

Functions  i r , satisfying differential equation (18), 
we assume in the form 


     1 1cos sin ,

for 1,...,
i i i i i i ir A r r B r r

i n
      


 

where ,i iA B  are unknown constants and i ia  . 
Substituting the functions (23) into conditions (19-22), we 
obtain the system of 2n  linear equations with respect to the 
constants iA , iB , 1,...,i n . The equation system can be 
written in the matrix form 

 Cd 0  

where 
 1 1 2 2 1 1... T

n n n nA B A B A B A B d  

and 
2 2i j n n

c


  C = . The non-zero elements of matrix C  

are: 11 1c  ,  2 ,2 1 cosi i i ic R  ,  2 ,2 sini i i ic R ,  

2 ,2 1 1i ic    , 2 1,2 1
1sin cosi i i i i i
i i

c R R
r

 
     , 

2 1,2
1cos sini i i i i i
i i

c R R
r

 
   ,  1

2 1,2 1
i

i i
i i i

c
r


 


   , 

1 1
2 1,2 2

i i
i i

i i
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      for 1,..., 1i n   

2 ,2 1
1sin cosn n n n n n
n n n n

ac R R
r

 
  




 
   

 
  and 

2 ,2
1cos sinn n n n n n
n n n n

ac R R
r

 
  

 
    

 
,  

where 1i i iR r r  . 

The non-zero solution of (24) exists for those values of 
 , for which the determinant of the matrix C  vanishes, 
i.e. 

 det 0C  

Equation (25) is then solved numerically with respect to 
For determined values k , 1,2,...k  , the corresponding 
functions 

    , 1
,

,
0 otherwise

i k i i
i k

r r r r
r


   

 


 

are appointed. The functions ,i k  are given by equation 

(23) for ,
k

i i k
ia

   . The coefficients ,i iA B  occurring 

in (23) for each k  are determined by solving an equation 
system which is obtained by assuming k  , 1nB   in 
the system (24). 

It can be shown that the functions ,i k  satisfy the 
orthogonality condition in the form 

    
1

, , '
1

0 for '
for '

i

i

rn
i

i k i k
i ki r

k k
r r dr

N k ka
  





  

   

where  

   2 2 2 2 2
, , ,

1

1
4

sin2 4 sin 2

k
k

n
i

i i i k i i i i k i i i i k i
i i

N

A B R A B R A B R
a


   



 

     
 

Substituting function  ,iV r t  given by (17) into (11) 
and by using the orthogonality condition (27), the equation 
for the function  k t  is obtained 

       
1

2 *
,

1

1 ,
i

i

rn
k

k k i i k
ik r

d t
t q r t r dr

d t N






  




     

This equation is complemented by the initial conditions 
which are obtained on the basis of (16-17) and the 
orthogonality condition (27). These initial conditions are: 

- for   in the interval (0,2]: 

      
1

*
,

1

10
i

i

rn
i

k i i k
ik i r

f r r dr
N a

 




    

- for   in the interval (1,2]: 

    
1
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,
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k i
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ik i rt

d g r r dr
d t N a
  




    

Introducing the function  

     
1

*
,

1
, ,

i

i
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k i k i
i r

Q r r q r dr d   




   , 

the solution of (28-30) can be presented in the form 

4 

The values of parameter   will be chosen such that non-
zero solutions of problem (18-22) exist. 

Functions  i r , satisfying differential equation (18), 
we assume in the form 


     1 1cos sin ,

for 1,...,
i i i i i i ir A r r B r r

i n
      


 

where ,i iA B  are unknown constants and i ia  . 
Substituting the functions (23) into conditions (19-22), we 
obtain the system of 2n  linear equations with respect to the 
constants iA , iB , 1,...,i n . The equation system can be 
written in the matrix form 

 Cd 0  

where 
 1 1 2 2 1 1... T

n n n nA B A B A B A B d  

and 
2 2i j n n

c


  C = . The non-zero elements of matrix C  

are: 11 1c  ,  2 ,2 1 cosi i i ic R  ,  2 ,2 sini i i ic R ,  

2 ,2 1 1i ic    , 2 1,2 1
1sin cosi i i i i i
i i

c R R
r

 
     , 

2 1,2
1cos sini i i i i i
i i

c R R
r

 
   ,  1

2 1,2 1
i

i i
i i i

c
r


 


   , 

1 1
2 1,2 2

i i
i i

i i

c  
 
 

      for 1,..., 1i n   

2 ,2 1
1sin cosn n n n n n
n n n n

ac R R
r

 
  




 
   

 
  and 

2 ,2
1cos sinn n n n n n
n n n n

ac R R
r

 
  

 
    

 
,  

where 1i i iR r r  . 

The non-zero solution of (24) exists for those values of 
 , for which the determinant of the matrix C  vanishes, 
i.e. 

 det 0C  

Equation (25) is then solved numerically with respect to 
For determined values k , 1,2,...k  , the corresponding 
functions 

    , 1
,

,
0 otherwise

i k i i
i k

r r r r
r


   

 


 

are appointed. The functions ,i k  are given by equation 

(23) for ,
k

i i k
ia

   . The coefficients ,i iA B  occurring 

in (23) for each k  are determined by solving an equation 
system which is obtained by assuming k  , 1nB   in 
the system (24). 

It can be shown that the functions ,i k  satisfy the 
orthogonality condition in the form 

    
1

, , '
1

0 for '
for '

i

i
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i

i k i k
i ki r

k k
r r dr

N k ka
  





  

   

where  
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, , ,
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1
4
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k
k
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i

i i i k i i i i k i i i i k i
i i

N

A B R A B R A B R
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Substituting function  ,iV r t  given by (17) into (11) 
and by using the orthogonality condition (27), the equation 
for the function  k t  is obtained 

       
1

2 *
,

1

1 ,
i

i

rn
k

k k i i k
ik r

d t
t q r t r dr

d t N






  




     

This equation is complemented by the initial conditions 
which are obtained on the basis of (16-17) and the 
orthogonality condition (27). These initial conditions are: 

- for   in the interval (0,2]: 
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f r r dr
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- for   in the interval (1,2]: 
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k i

i i k
ik i rt

d g r r dr
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Introducing the function  
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   , 

the solution of (28-30) can be presented in the form 

Substituting function Vi(r, t), given by (17), into (11) and 
by using the orthogonality condition (27), the equation for the 
function Λk(t) is obtained:

 

4 

The values of parameter   will be chosen such that non-
zero solutions of problem (18-22) exist. 

Functions  i r , satisfying differential equation (18), 
we assume in the form 


     1 1cos sin ,

for 1,...,
i i i i i i ir A r r B r r

i n
      


 

where ,i iA B  are unknown constants and i ia  . 
Substituting the functions (23) into conditions (19-22), we 
obtain the system of 2n  linear equations with respect to the 
constants iA , iB , 1,...,i n . The equation system can be 
written in the matrix form 

 Cd 0  

where 
 1 1 2 2 1 1... T

n n n nA B A B A B A B d  

and 
2 2i j n n

c


  C = . The non-zero elements of matrix C  

are: 11 1c  ,  2 ,2 1 cosi i i ic R  ,  2 ,2 sini i i ic R ,  

2 ,2 1 1i ic    , 2 1,2 1
1sin cosi i i i i i
i i

c R R
r

 
     , 

2 1,2
1cos sini i i i i i
i i

c R R
r

 
   ,  1

2 1,2 1
i

i i
i i i

c
r


 


   , 

1 1
2 1,2 2

i i
i i

i i
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      for 1,..., 1i n   

2 ,2 1
1sin cosn n n n n n
n n n n
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2 ,2
1cos sinn n n n n n
n n n n

ac R R
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,  

where 1i i iR r r  . 

The non-zero solution of (24) exists for those values of 
 , for which the determinant of the matrix C  vanishes, 
i.e. 

 det 0C  

Equation (25) is then solved numerically with respect to 
For determined values k , 1,2,...k  , the corresponding 
functions 

    , 1
,

,
0 otherwise

i k i i
i k

r r r r
r


   

 


 

are appointed. The functions ,i k  are given by equation 

(23) for ,
k

i i k
ia

   . The coefficients ,i iA B  occurring 

in (23) for each k  are determined by solving an equation 
system which is obtained by assuming k  , 1nB   in 
the system (24). 

It can be shown that the functions ,i k  satisfy the 
orthogonality condition in the form 

    
1

, , '
1

0 for '
for '
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i
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N k ka
  





  

   

where  
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Substituting function  ,iV r t  given by (17) into (11) 
and by using the orthogonality condition (27), the equation 
for the function  k t  is obtained 
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k k i i k
ik r

d t
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This equation is complemented by the initial conditions 
which are obtained on the basis of (16-17) and the 
orthogonality condition (27). These initial conditions are: 

- for   in the interval (0,2]: 
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- for   in the interval (1,2]: 
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the solution of (28-30) can be presented in the form 

. (28)

This equation is complemented by the initial conditions, which 
are obtained on the basis of (16, 17) and the orthogonality con-
dition (27). These initial conditions are:
– for α in the interval (0,2]:
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The values of parameter   will be chosen such that non-
zero solutions of problem (18-22) exist. 

Functions  i r , satisfying differential equation (18), 
we assume in the form 


     1 1cos sin ,

for 1,...,
i i i i i i ir A r r B r r

i n
      


 

where ,i iA B  are unknown constants and i ia  . 
Substituting the functions (23) into conditions (19-22), we 
obtain the system of 2n  linear equations with respect to the 
constants iA , iB , 1,...,i n . The equation system can be 
written in the matrix form 

 Cd 0  

where 
 1 1 2 2 1 1... T

n n n nA B A B A B A B d  
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c
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where 1i i iR r r  . 

The non-zero solution of (24) exists for those values of 
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Equation (25) is then solved numerically with respect to 
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(23) for ,
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   . The coefficients ,i iA B  occurring 

in (23) for each k  are determined by solving an equation 
system which is obtained by assuming k  , 1nB   in 
the system (24). 

It can be shown that the functions ,i k  satisfy the 
orthogonality condition in the form 
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Substituting function  ,iV r t  given by (17) into (11) 
and by using the orthogonality condition (27), the equation 
for the function  k t  is obtained 
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This equation is complemented by the initial conditions 
which are obtained on the basis of (16-17) and the 
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Substituting function  ,iV r t  given by (17) into (11) 
and by using the orthogonality condition (27), the equation 
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(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 
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where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 
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where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 
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The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 
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The initial temperature in the sphere and the ambient 
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only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 
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where Γ is the gamma function. Function Eα is defined by 
Eα(z) = Eα,1(z).

Finally, function Vi(r, t) is given by (17), where the functions 
Φi,k(r) and Λk(t) are given by (23) and (31), respectively. Taking 
into account the relationship of (10) and (17), (23) and (31), the 
temperature Ti(r, t) can be expressed by:

5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







 (33)

where Fj(r, t) = fj
¤
(r) + tgi

¤ 
(r).

In a particular case, for α = α’ = 1, formula (33) presents 
the solution of the classical heat conduction problem. Intro-
ducing the matrix:

5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







,

where

 

5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







 (34)

we can write (33) in a matrix form:

 

5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







 (35)

Brought to you by | Gdansk University of Technology
Authenticated

Download Date | 4/25/17 2:40 PM



183Bull.  Pol.  Ac.:  Tech.  65(2)  2017

An analytical solution to the problem of time-fractional heat conduction in a composite sphere

where the column-matrices T(r, t), U(r’, t) and U(r’, τ) are:

5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







,

5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







,

5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 

    ,
0

k

k

zE z
k    






  

where   is the gamma function. Function E  is defined 
by:    ,1E z E z  . 

Finally, function  ,iV r t  is given by (17) where the 

functions  ,i k r  and  k t  are given by (23) and (31), 
respectively. Taking into account the relationship (10) and 
(17), (23) and (31), the temperature  ,iT r t  can be 
expressed by 

       

      

       

1

1

1 *

1 0

2
, , ,

1

2
, ,

1 1

1, ',

1 ' '

1 1 ' ', '

j

j

j

j

rtn

i j
j r

k i k j k
k k

rn
j

k i k j k j
j kj kr

T r t T t t q r
r

E t r r dr d
N

E t r r F r t dr
r a N




 




 

    


  
















 

   

   



  



 


where      * *,j j iF r t f r t g r  . 
In the particular case, for ' 1   , formula (33) 

presents the solution of the classical heat conduction 
problem. Introducing the matrix: 

   , ' , '
, 1 ,

, ; ', , ; ',i j i j N
r t r G r t r    

 
   G ,  

where 

 

        

, '
,

' 1 2
, , , '

1

, ; ',

1 '

i j

i k j k k
k k

G r t r

t r r E t
N

 

 
 



    








  


we can write (33) in a matrix form 

     

   

, '

0 0

,1

0

1, ' , ; ', ', '

1 ' , ; ',0 ', '

t b

b

r t r r t r r dr d
r

r r t r r t dr
r

 



   



 



T G U

G F
 

where the column-matrices  ,r tT ,  ',r tU  and  ',r F  
are 

         1, , . . . ,
T

nr t T r t T t T r t T t     T 

     1', ', . . . ',
T

nr t U r t U r t   U 

     1', ', ... ',
T

nr F r F r     F 

where 

     ', ', j
j j

j

d T
U r q r

a d t





 
    

           ', ' 0 ' 0j
j j j

j

F r t f r T t g r T
a


 
    

The matrix , ' G  is a Green’s function matrix for the 
considered problem. 

4. Temperature distribution in the sphere 
with harmonically varying heat generation 

We assume that volumetric heat generation in the 
sphere is described by a function defined by 

  1 2 1

1 1

sin , 0 , 1
,

0, , 2,...,i
i

Q Q t r r i
q r t

r r r i n




   
    

 

The initial temperature in the sphere and the ambient 
temperature are assumed as constants: 
    0,0 for 1,...,i iT r f r T i n   , and   aT t T   

for 0t  . Using (33) and (36), the function  ,iT r t  can 
be rewritten as 

     

      

20
,

1

1, 1 2
, 1 , 2 ,

1

,

1

a k
i a i k k

k k

k
i k k k

k k

T TT r t T r E t
r N

r Q J t Q J t
r N




 

  













   

 




 

where ,

1

n
j j k

k
j ja
 




   and 

 

    

    

1

, ,

, , 1 , , 12
,

, , 1 , , 1 , 1

' ' '

1 cos sin 1

cos sin ,

j

j

r

j k j k
r

j k j k j j j k j j k j j
j k

j k j k j j k j j k j j j k j j

r r dr

A r r r r r

B r r r r r r

 

  


   



 

  

 

     

    







,

where:

5 

        

        
1

1 2
,

0

2 * *
,

1

1 ,

1 i

i

t

k k k
k

rn
i

k i i i k
ik i r

t t E t Q r
N

E t f r t g r r dr
N a

 
 




    

 






   

  



 
 

(31) 
wherein the term  *
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The matrix Gα,α’ is a Green’s function matrix for the considered 
problem.

4. Temperature distribution in a sphere with 
harmonically varying heat generation

We assume that volumetric heat generation in the sphere is 
described by a function defined by
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The initial temperature in the sphere and the ambient tem-
perature are assumed as constants: Ti(r, 0) = fi(r) = T0 for 
i = 1, …, n and T∞(t) = Ta for t ¸ 0. Using (33) and (36), the 
function Ti(r, t) can be rewritten as:
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wherein the term  *

it g r  under the second integral occurs 

only for  1,2  . In (31), ,E   is a two-parameter 
Mittag-Leffler function which is defined by [29] 
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The integral occurring in (41) for 0 2  , can be 
expressed as [22] 
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The convolution integral occurring in equation (40) will be 
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where L  denotes the Laplace transform: 
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Finally, the temperature distribution in the i -th layer of the 
sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1

,kJ t  is given by 

(43) and function  2
,kJ t  for p q  , is given by (47). 

5. Temperature distribution in the sphere 
with harmonically varying ambient 
temperature 

The temperature distribution in the sphere without heat 
generation is given by equation (33) in which it is assumed 
that:  , 0jg r t   for 1,...,j n . Moreover, we assume that 
the initial temperature is constant and the same in all layers: 

  0jf r T  for 1,...,j n , and ambient temperature  T t  
changes according to the formula 

   1 2 sinT t P P t    

Hence, using (33), we find the temperature distribution in 
the sphere as 
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 Function  2
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Finally, the temperature distribution in the i -th layer of the 
sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1

,kJ t  is given by 

(43) and function  2
,kJ t  for p q  , is given by (47). 

5. Temperature distribution in the sphere 
with harmonically varying ambient 
temperature 

The temperature distribution in the sphere without heat 
generation is given by equation (33) in which it is assumed 
that:  , 0jg r t   for 1,...,j n . Moreover, we assume that 
the initial temperature is constant and the same in all layers: 

  0jf r T  for 1,...,j n , and ambient temperature  T t  
changes according to the formula 

   1 2 sinT t P P t    

Hence, using (33), we find the temperature distribution in 
the sphere as 
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Functions J 1
α,k(t) and J 2

α,k(t) for α = 1 and α = 2 can be ex-
pressed in a simple form by using the properties of the Mit-
tag-Leffler function [29]: E1(z) = ez, E2,2(–z) = sin z/ z. After 
calculations, the integrals in (39, 40), we obtain:
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Unknowns ,j jA B  are determined by solving an equation 

system which is obtained by comparing the coefficients in 

the polynomials received by multiplication of (45) by the 
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 Function  2
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Finally, the temperature distribution in the i -th layer of the 
sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1

,kJ t  is given by 

(43) and function  2
,kJ t  for p q  , is given by (47). 

5. Temperature distribution in the sphere 
with harmonically varying ambient 
temperature 

The temperature distribution in the sphere without heat 
generation is given by equation (33) in which it is assumed 
that:  , 0jg r t   for 1,...,j n . Moreover, we assume that 
the initial temperature is constant and the same in all layers: 

  0jf r T  for 1,...,j n , and ambient temperature  T t  
changes according to the formula 

   1 2 sinT t P P t    

Hence, using (33), we find the temperature distribution in 
the sphere as 
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   and s  is the complex variable. The 
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2 1 1

2 2 2 2 2 2
0 0

1 1 1 1q p
j j

j jp q q p
j jk k

A z B z
z z z z   

 

 

 
      



Unknowns ,j jA B  are determined by solving an equation 

system which is obtained by comparing the coefficients in 

the polynomials received by multiplication of (45) by the 

denominators.  

 Function  2
,kJ t  for p q  , is determined by using 

the equations (44-45) and the following formula [28] 
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Finally, the temperature distribution in the i -th layer of the 
sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1

,kJ t  is given by 

(43) and function  2
,kJ t  for p q  , is given by (47). 

5. Temperature distribution in the sphere 
with harmonically varying ambient 
temperature 

The temperature distribution in the sphere without heat 
generation is given by equation (33) in which it is assumed 
that:  , 0jg r t   for 1,...,j n . Moreover, we assume that 
the initial temperature is constant and the same in all layers: 

  0jf r T  for 1,...,j n , and ambient temperature  T t  
changes according to the formula 

   1 2 sinT t P P t    

Hence, using (33), we find the temperature distribution in 
the sphere as 
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Finally, the temperature distribution in the i -th layer of the 
sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1

,kJ t  is given by 

(43) and function  2
,kJ t  for p q  , is given by (47). 

5. Temperature distribution in the sphere 
with harmonically varying ambient 
temperature 

The temperature distribution in the sphere without heat 
generation is given by equation (33) in which it is assumed 
that:  , 0jg r t   for 1,...,j n . Moreover, we assume that 
the initial temperature is constant and the same in all layers: 

  0jf r T  for 1,...,j n , and ambient temperature  T t  
changes according to the formula 

   1 2 sinT t P P t    

Hence, using (33), we find the temperature distribution in 
the sphere as 
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Finally, the temperature distribution in the i -th layer of the 
sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1

,kJ t  is given by 

(43) and function  2
,kJ t  for p q  , is given by (47). 

5. Temperature distribution in the sphere 
with harmonically varying ambient 
temperature 

The temperature distribution in the sphere without heat 
generation is given by equation (33) in which it is assumed 
that:  , 0jg r t   for 1,...,j n . Moreover, we assume that 
the initial temperature is constant and the same in all layers: 

  0jf r T  for 1,...,j n , and ambient temperature  T t  
changes according to the formula 

   1 2 sinT t P P t    

Hence, using (33), we find the temperature distribution in 
the sphere as 
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The integral occurring in (41) for 0 < α ∙ 2, can be ex-
pressed as [22]:

 

6 

    1 1 2
, ,

0

t

k kJ t E d 
        

     2 1 2
, ,

0

sin
t

k kJ t E t d 
           

Functions  tJ k
1

,  and  tJ k
2

,  for 1  and 2  
can be expressed in a simple form by using the properties 
of the Mittag-Leffler function [29]:   zezE 1 , 

 
z

zzE sin
2,2  . After calculations the integrals in 

(39-40), we obtain 

   21
1, 2

1 1 k t
k

k

J t e 


      1

2, 2

1 1 cosk k
k

J t t


   

  22 2
1, 4 2

1 cos sink t
k k

k

J t e t t    
 

    
 a

 2
2, 2 2

1 sin sink k
k k

J t t t 
  

 
    

 b

The integral occurring in (41) for 0 2  , can be 
expressed as [22] 

    1 2
, , 1k kJ t t E t 

      

The convolution integral occurring in equation (40) will be 
determined for a rationale number of order  , by applying 
the properties of the Laplace transform. Namely, by using 
the convolution rule, we obtain the Laplace transform of 
the function  2

,kJ t  in the form 

   2
, 2 2 2

1
k

k

L J t
s s 


 


 

 

where L  denotes the Laplace transform: 

    
0

stL f t f t e dt


   and s  is the complex variable. The 

inverse Laplace transform will be determined for rational 
numbers  , i.e. we assume that p q  , where p , q  are 
positive integer, relative prime numbers. Introducing the 
new variable: 1 qz s , the right hand side of equation (44) 
can be written in the form 

2 1 1

2 2 2 2 2 2
0 0

1 1 1 1q p
j j

j jp q q p
j jk k

A z B z
z z z z   

 

 

 
      



Unknowns ,j jA B  are determined by solving an equation 
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Finally, the temperature distribution in the i -th layer of the 
sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1

,kJ t  is given by 

(43) and function  2
,kJ t  for p q  , is given by (47). 
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The convolution integral occurring in equation (40) will be 
determined for a rationale number of order α, by applying the 
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where L denotes the Laplace transform: L{ f(t)} = ∫0
∞

f(t)e–stdt 
and s is the complex variable. The inverse Laplace transform 
will be determined for rational numbers α, i.e. we assume that 
α = p/q, where p, q are positive integer relative prime numbers. 
Introducing the new variable, z = s1/q, the right-hand side of 
equation (44) can be written in the form of:
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sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1

,kJ t  is given by 

(43) and function  2
,kJ t  for p q  , is given by (47). 

5. Temperature distribution in the sphere 
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generation is given by equation (33) in which it is assumed 
that:  , 0jg r t   for 1,...,j n . Moreover, we assume that 
the initial temperature is constant and the same in all layers: 

  0jf r T  for 1,...,j n , and ambient temperature  T t  
changes according to the formula 
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Hence, using (33), we find the temperature distribution in 
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Unknowns Aj, Bj are determined by solving an equation system, 
which is obtained by comparing the coefficients in the polyno-
mials received by multiplication of (45) by the denominators.

Function J 2
α,k(t) for α = p/q is determined using the equa-

tions (44, 45) and the following formula [28]:
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Hence, the function J 2
p/q,k(t) is as follows:
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sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1
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generation is given by equation (33) in which it is assumed 
that:  , 0jg r t   for 1,...,j n . Moreover, we assume that 
the initial temperature is constant and the same in all layers: 

  0jf r T  for 1,...,j n , and ambient temperature  T t  
changes according to the formula 
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Hence, using (33), we find the temperature distribution in 
the sphere as 
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Finally, the temperature distribution in the i-th layer of the 
sphere with harmonically varying heat generation (36) is given 
by equation (37), where function J 1

α,k(t) is given by (43), and 
function J 2

α,k(t) for α = p/q is given by (47).

5. Temperature distribution in the sphere with 
harmonically varying ambient temperature

Temperature distribution in the sphere without heat gener-
ation is given by equation (33), in which it is assumed that 
gj(r, t) = 0 for j = 1, …, n. Moreover, we assume that the initial 
temperature is constant and the same in all layers: fj(r) = T0 for 
j = 1, …, n, and ambient temperature T∞(t) changes according 
to the formula:
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Finally, the temperature distribution in the i -th layer of the 
sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1

,kJ t  is given by 

(43) and function  2
,kJ t  for p q  , is given by (47). 

5. Temperature distribution in the sphere 
with harmonically varying ambient 
temperature 
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generation is given by equation (33) in which it is assumed 
that:  , 0jg r t   for 1,...,j n . Moreover, we assume that 
the initial temperature is constant and the same in all layers: 

  0jf r T  for 1,...,j n , and ambient temperature  T t  
changes according to the formula 
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Hence, using (33), we find the temperature distribution in 
the sphere as 
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Hence, using (33), we find the temperature distribution in the 
sphere as:

 

6 

    1 1 2
, ,

0

t

k kJ t E d 
        

     2 1 2
, ,

0

sin
t

k kJ t E t d 
           

Functions  tJ k
1

,  and  tJ k
2

,  for 1  and 2  
can be expressed in a simple form by using the properties 
of the Mittag-Leffler function [29]:   zezE 1 , 

 
z

zzE sin
2,2  . After calculations the integrals in 

(39-40), we obtain 

   21
1, 2

1 1 k t
k

k

J t e 


      1

2, 2

1 1 cosk k
k

J t t


   

  22 2
1, 4 2

1 cos sink t
k k

k

J t e t t    
 

    
 a

 2
2, 2 2

1 sin sink k
k k

J t t t 
  

 
    

 b

The integral occurring in (41) for 0 2  , can be 
expressed as [22] 

    1 2
, , 1k kJ t t E t 

      

The convolution integral occurring in equation (40) will be 
determined for a rationale number of order  , by applying 
the properties of the Laplace transform. Namely, by using 
the convolution rule, we obtain the Laplace transform of 
the function  2

,kJ t  in the form 

   2
, 2 2 2

1
k

k

L J t
s s 


 


 

 

where L  denotes the Laplace transform: 

    
0

stL f t f t e dt


   and s  is the complex variable. The 

inverse Laplace transform will be determined for rational 
numbers  , i.e. we assume that p q  , where p , q  are 
positive integer, relative prime numbers. Introducing the 
new variable: 1 qz s , the right hand side of equation (44) 
can be written in the form 

2 1 1

2 2 2 2 2 2
0 0

1 1 1 1q p
j j

j jp q q p
j jk k

A z B z
z z z z   

 

 

 
      



Unknowns ,j jA B  are determined by solving an equation 

system which is obtained by comparing the coefficients in 

the polynomials received by multiplication of (45) by the 

denominators.  

 Function  2
,kJ t  for p q  , is determined by using 

the equations (44-45) and the following formula [28] 

   1
,

sL t E t
s

 
 

  



  


 

Hence, the function  2
,p q kJ t  is as follows 

   

   

2 1 1
2 2 2

, 2,2
0

1 1
2

,
0

jq
q

p q k j j q
j

p jp
p qq

j kp q p j q
j

J t A t E t

B t E t

 

 

 




 




  

 





 

Finally, the temperature distribution in the i -th layer of the 
sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1

,kJ t  is given by 

(43) and function  2
,kJ t  for p q  , is given by (47). 

5. Temperature distribution in the sphere 
with harmonically varying ambient 
temperature 

The temperature distribution in the sphere without heat 
generation is given by equation (33) in which it is assumed 
that:  , 0jg r t   for 1,...,j n . Moreover, we assume that 
the initial temperature is constant and the same in all layers: 

  0jf r T  for 1,...,j n , and ambient temperature  T t  
changes according to the formula 

   1 2 sinT t P P t    

Hence, using (33), we find the temperature distribution in 
the sphere as 

       

   

20 1
,

1

32
, ,

1

,

,

k
i i k k

k k

k
i k k

k k

T PT r t T t r E t
r N

P r J t
r N






  

 











  






 

where 

      13 2
, ,

0

sint

k k
dJ t t E t d

d


 

   
   


   



6 

    1 1 2
, ,

0

t

k kJ t E d 
        

     2 1 2
, ,

0

sin
t

k kJ t E t d 
           

Functions  tJ k
1

,  and  tJ k
2

,  for 1  and 2  
can be expressed in a simple form by using the properties 
of the Mittag-Leffler function [29]:   zezE 1 , 

 
z

zzE sin
2,2  . After calculations the integrals in 

(39-40), we obtain 

   21
1, 2

1 1 k t
k

k

J t e 


      1

2, 2

1 1 cosk k
k

J t t


   

  22 2
1, 4 2

1 cos sink t
k k

k

J t e t t    
 

    
 a

 2
2, 2 2

1 sin sink k
k k

J t t t 
  

 
    

 b

The integral occurring in (41) for 0 2  , can be 
expressed as [22] 

    1 2
, , 1k kJ t t E t 

      

The convolution integral occurring in equation (40) will be 
determined for a rationale number of order  , by applying 
the properties of the Laplace transform. Namely, by using 
the convolution rule, we obtain the Laplace transform of 
the function  2

,kJ t  in the form 

   2
, 2 2 2

1
k

k

L J t
s s 


 


 

 

where L  denotes the Laplace transform: 

    
0

stL f t f t e dt


   and s  is the complex variable. The 

inverse Laplace transform will be determined for rational 
numbers  , i.e. we assume that p q  , where p , q  are 
positive integer, relative prime numbers. Introducing the 
new variable: 1 qz s , the right hand side of equation (44) 
can be written in the form 

2 1 1

2 2 2 2 2 2
0 0

1 1 1 1q p
j j

j jp q q p
j jk k

A z B z
z z z z   

 

 

 
      



Unknowns ,j jA B  are determined by solving an equation 

system which is obtained by comparing the coefficients in 

the polynomials received by multiplication of (45) by the 

denominators.  

 Function  2
,kJ t  for p q  , is determined by using 

the equations (44-45) and the following formula [28] 

   1
,

sL t E t
s

 
 

  



  


 

Hence, the function  2
,p q kJ t  is as follows 

   

   

2 1 1
2 2 2

, 2,2
0

1 1
2

,
0

jq
q

p q k j j q
j

p jp
p qq

j kp q p j q
j

J t A t E t

B t E t

 

 

 




 




  

 





 

Finally, the temperature distribution in the i -th layer of the 
sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1

,kJ t  is given by 

(43) and function  2
,kJ t  for p q  , is given by (47). 

5. Temperature distribution in the sphere 
with harmonically varying ambient 
temperature 

The temperature distribution in the sphere without heat 
generation is given by equation (33) in which it is assumed 
that:  , 0jg r t   for 1,...,j n . Moreover, we assume that 
the initial temperature is constant and the same in all layers: 

  0jf r T  for 1,...,j n , and ambient temperature  T t  
changes according to the formula 

   1 2 sinT t P P t    

Hence, using (33), we find the temperature distribution in 
the sphere as 

       

   

20 1
,

1

32
, ,

1

,

,

k
i i k k

k k

k
i k k

k k

T PT r t T t r E t
r N

P r J t
r N






  

 











  






 

where 

      13 2
, ,

0

sint

k k
dJ t t E t d

d


 

   
   


   



 (49)

where

 

6 

    1 1 2
, ,

0

t

k kJ t E d 
        

     2 1 2
, ,

0

sin
t

k kJ t E t d 
           

Functions  tJ k
1

,  and  tJ k
2

,  for 1  and 2  
can be expressed in a simple form by using the properties 
of the Mittag-Leffler function [29]:   zezE 1 , 

 
z

zzE sin
2,2  . After calculations the integrals in 

(39-40), we obtain 

   21
1, 2

1 1 k t
k

k

J t e 


      1

2, 2

1 1 cosk k
k

J t t


   

  22 2
1, 4 2

1 cos sink t
k k

k

J t e t t    
 

    
 a

 2
2, 2 2

1 sin sink k
k k

J t t t 
  

 
    

 b

The integral occurring in (41) for 0 2  , can be 
expressed as [22] 

    1 2
, , 1k kJ t t E t 

      

The convolution integral occurring in equation (40) will be 
determined for a rationale number of order  , by applying 
the properties of the Laplace transform. Namely, by using 
the convolution rule, we obtain the Laplace transform of 
the function  2

,kJ t  in the form 

   2
, 2 2 2

1
k

k

L J t
s s 


 


 

 

where L  denotes the Laplace transform: 

    
0

stL f t f t e dt


   and s  is the complex variable. The 

inverse Laplace transform will be determined for rational 
numbers  , i.e. we assume that p q  , where p , q  are 
positive integer, relative prime numbers. Introducing the 
new variable: 1 qz s , the right hand side of equation (44) 
can be written in the form 

2 1 1

2 2 2 2 2 2
0 0

1 1 1 1q p
j j

j jp q q p
j jk k

A z B z
z z z z   

 

 

 
      



Unknowns ,j jA B  are determined by solving an equation 

system which is obtained by comparing the coefficients in 

the polynomials received by multiplication of (45) by the 

denominators.  

 Function  2
,kJ t  for p q  , is determined by using 

the equations (44-45) and the following formula [28] 

   1
,

sL t E t
s

 
 

  



  


 

Hence, the function  2
,p q kJ t  is as follows 

   

   

2 1 1
2 2 2

, 2,2
0

1 1
2

,
0

jq
q

p q k j j q
j

p jp
p qq

j kp q p j q
j

J t A t E t

B t E t

 

 

 




 




  

 





 

Finally, the temperature distribution in the i -th layer of the 
sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1
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(43) and function  2
,kJ t  for p q  , is given by (47). 
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temperature 
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generation is given by equation (33) in which it is assumed 
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Finally, the temperature distribution in the i -th layer of the 
sphere with harmonically varying heat generation (36) is 
given by equation (37) where function  1

,kJ t  is given by 

(43) and function  2
,kJ t  for p q  , is given by (47). 

5. Temperature distribution in the sphere 
with harmonically varying ambient 
temperature 

The temperature distribution in the sphere without heat 
generation is given by equation (33) in which it is assumed 
that:  , 0jg r t   for 1,...,j n . Moreover, we assume that 
the initial temperature is constant and the same in all layers: 
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We calculate the integral (50) by using the property of the 
Laplace transform of the Caputo derivative:
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This completes the formula for temperature distribution in 
the i -th layer of the sphere: the temperature is determined 
by (49) where function  3

,kJ t  is given by (54) and 

function  2
,kJ t  for p q   is given by (47). 

6. Numerical example 

The analytical solution of the fractional heat conduction 
problem derived in the previous sections will be used to 
computation the temperature distributions in a layered 
sphere. Two illustrative numerical examples are presented. 
In both examples the considered sphere consists of an inner 
small solid sphere of radius 1r  and five concentric annular 
layers of outer radii ir . Non-dimensional radii bri / , 
  

Table 1. Non-dimensional outer radii, thermal diffusivity and thermal 
conductivity of the sphere layers applied in the numerical examples. 

i  1 2 3 4 5 6 

/ir b  0.25 0.4 0.55 0.7 0.85 1.0 

ia  [m2/s  ] 2.2·10-5 3.3·10-6 6.0·10-6 1.1·10-5 2.0·10-5 3.6·10-5 

i [W/(m∙K)] 0.016 16.0 24.0 36.0 54.0 81.0 

 
thermal diffusivity ia  and thermal conductivity i  of the 
material of the solid inner sphere and the five layers are 
given in Table 1. The physical units given in Table 1 were 
discussed in [30]. The heat transfer coefficient is assumed 
as: a =1200.0 [W/(m2∙K)]. The computation were 
performed using the Mathematica package [31]. 

The first example concerns the fractional heat 
conduction in the sphere with harmonically varying heat 
generation in the inner solid sphere which is given by the 
formula (36). The frequency of changes of the volumetric 
heat source intensity is: 2 12000   [s-1] and the 
coefficients in the formula (36) are: 1 2Q Q  4.2·107 
[W/m3]. The initial temperature in the sphere T0 and the 
ambient temperature Ta are assumed as constants: T0 = 50 
[○C], Ta = 40 [○C]. The non-dimensional temperature 
    0, ,T r T r T   at the outer surface of the sphere  

( r r b ), as a function of variable 6
2

a t
b

  , for different 

values of the fractional order are presented in Figure 2. The 
computations were performed for   = 0.75; 0.8; 0.85; 0.9; 
0.95; 1.0. It can be seen that amplitudes of the temperature 
oscillations at the outer surface of the sphere decrease for 
smaller orders of the fractional derivative in the heat 
conduction model. This observation leads to a physical 
interpretation of the parameter   as a thermal damping 
coefficient in the fractional heat conduction model. 

 

 
Fig. 2. Non-dimensional temperature  1,T   as a function of variable 

6
2

a t
b

   for different values of fractional order  . 
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This completes the formula for temperature distribution in the 
i-th layer of the sphere: the temperature is determined by (49), 
where function J 3

α,k(t) is given by (54) and function J 2
α,k(t) for 

α = p/q is given by (47).

6. Numerical example

The analytical solution of the fractional heat conduction 
problem derived in the previous sections will be used to com-
pute the temperature distributions in a layered sphere. Two il-
lustrative numerical examples are presented. In both examples 
the considered sphere consists of an inner, small solid sphere 
of radius r1 and five concentric spherical layers of outer radii ri. 
Non-dimensional radii ri/b, thermal diffusivity ai, and thermal 
conductivity λi of the material of the solid inner sphere and the 
five layers are given in Table 1. The physical units given in 
Table 1 were discussed in [30]. The heat transfer coefficient 
is assumed as a∞ = 1200.0 W/(m2 ∙ K). The computations were 
performed using the Mathematica package [31].

Table 1 
Non-dimensional outer radii, thermal diffusivity and thermal 

conductivity of the sphere layers applied in the numerical examples

i 1 2 3 4 5 6

ri/b 0.25 0.4 0.55 0.7 0.85 1.0

ai[m2/sα] 2.2·10–5 3.3·10–6 6.0·10–6 1.1·10–5 2.0·10–5 3.6·10–5

λi[W/(m∙K)] 0.016 16.0 24.0 36.0 54.0 81.0

The first example concerns fractional heat conduction 
in the sphere with harmonically varying heat generation in 
the inner solid sphere, which is given by formula (36). The 
frequency of changes of the volumetric heat source inten-
sity is ν = 2π/12000 s–1, and the coefficients in the formula 
(36) are Q1 = Q2 = 4.2 ∙107 W/m3. The initial temperature in 
the sphere T0 and the ambient temperature Ta are assumed as 
constants: T0 = 50○C, Ta = 40○C. The non-dimensional tem-
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perature T–(r–, τ) = T(r, τ)/T0 at the outer surface of the sphere 
(r– = r/b), as a function of variable τ = a6

b2 t for different values 
of the fractional order, is presented in Fig. 2. The computations 
were performed for α = 0.75; 0.8; 0.85; 0.9; 0.95; 1.0. It can be 
seen that amplitudes of the temperature oscillations at the outer 
surface of the sphere decrease for smaller orders of the frac-
tional derivative in the heat conduction model. This observation 
leads to a physical interpretation of the parameter α as a thermal 
damping coefficient in the fractional heat conduction model.

7. Concluding remarks

The solution of the time-fractional, radial heat conduction 
problem in a multilayered solid sphere in an analytical form 
has been derived. The temperature distribution in the sphere is 
obtained by taking into consideration the time-space-dependent 
volumetric heat source and the time-dependent ambient tem-
perature. A numerical computation was performed to show the 
temperature time-history at the outer surface of the sphere for 
different values of the time-derivative fractional orders in the 
heat conduction equation when the intensity of the inner heat 
source varies harmonically with time. It is observed that the 
amplitude of the temperature oscillation at the sphere surface 
is lower for the heat conduction characterized by a lower order 
of the fractional derivative. Another numerical example shows 
the temperature distribution as a function of distance from the 
center sphere when the ambient temperature varies harmoni-
cally with time. The changes of the temperature in the sphere 
at a fixed time are smaller for lower orders of the fractional 
derivative. Although the numerical computation was performed 
for five layers of the solid sphere, the obtained solution can be 
used for numerical calculation of the temperature in the sphere 
consisting of an arbitrary number of concentric sphere layers. 
The approach can also be applied to approximate a solution of 
the fractional heat conduction problem in the radially, function-
ally graded sphere.
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In the second example, the changes of temperature in the 
sphere follow as a result of oscillation of ambient temperature 
T∞(t), which changes according to formula (48). It is assumed 
that there is no heat source in the sphere and the initial tempera-
ture is T0 = 75○C. The numerical computations were performed 
for α = 0.4; 0.6; 0.8; 1.0; 1.2; 1.25; 1.3; 2.0, and for an oscilla-
tion frequency of the ambient temperature ν = 2π/12000 s–1. 
The coefficients in the formula (48) are assumed as P1 = 75○C 
and P2 = 50○C. The remaining data are the same as in the first 
example. Non-dimensional temperature T–(r–, τ) as a function of 
radial coordinate r– = r/b for different values of variable τ and 
different orders of the time-fractional derivative α are presented 
in Fig. 3.

Fig. 3. Non-dimensional temperature T–(1, τ), as a function of the radial coordinate r– = r/b, for τ = 0.3; 0.5; 0.7; 0.9 and different values of 
fractional order α
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