Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Dual active full-bridge (DAB) DC–DC converters are widely used in DC microgrids and various fields of power electronics. It has the advantages of high-power density, easy to implement soft switching and bi-directional power transfer capability. Conventional linear controllers have difficulty in meeting the increasing demands for speed and robustness. In this paper, a control strategy based on the Brayton–Moser theory of power shaping is proposed to improve the control strategy of DAB DC–DC converters. The DAB DC–DC converter is modelled and the controller is designed based on the Brayton–Moser power-shaping theory. A simulation of the DAB DC–DC converter is constructed and a comparative analysis is carried out for three control strategies of PI control, passive control and power-shaping Brayton–Moser control under different operating conditions.
Czasopismo
Rocznik
Tom
Strony
543--556
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr., wz.
Twórcy
autor
- School of Automation, Beijing Information Science and Technology University, No. 12 Qinghe Xiaoying East Road, Haidian District, Beijing, China
autor
- School of Automation, Beijing Information Science and Technology University, No. 12 Qinghe Xiaoying East Road, Haidian District, Beijing, China
autor
- Branch of Resource and Environment, China National Institute of Standardization, No. 4 Zhi Chun Road, Haidian District, Beijing, China
autor
- Branch of Resource and Environment, China National Institute of Standardization, No. 4 Zhi Chun Road, Haidian District, Beijing, China
Bibliografia
- [1] Tao L., Yang X., Yang X., Peng X., Yang L., Lang H., Xiang H., Adaptive voltage control scheme for DAB based modular cascaded SST in PV application, 2018 International Power Electronics Conference (IPEC-Niigata 2018 ECCE Asia), pp. 1478–1483 (2018), DOI: 10.23919/IPEC.2018.8507808.
- [2] Shuyu C., Sriram V.B., Tafti H.D., Ravi Kishore K.V., Modular DAB DC–DC converter low voltage side dc link capacitor two-stage charging-up control for solid state transformer application, 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), pp. 1–7 (2017), DOI: 10.1109/ACEPT.2017.8168624.
- [3] Saha J., Subramanium A., Panda S.K., Design of Integrated Medium Frequency Transformer (iMFT) for Dual-Active-Bridge (DAB) Based Solid-State-Transformers, 2021 IEEE 12th Energy Conversion Congress and Exposition-Asia (ECCE-Asia), pp. 893–898 (2021), DOI: 10.1109/ECCEAsia49820.2021.9479113.
- [4] Yuhan X., Xin Z., Qingxin T., Xuwei D., Zhaoyang X., Quasi-Single Stage DC–DC Converter Integrating DAB and Buck-Boost for Wide Output Voltage Range Applications, 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA) (2023), DOI: 10.1109/ICIEA58696.2023.10241460.
- [5] Zhihao C., Zhenbin Z., Xiaozhe S., Zhen L., Xiaozhe L., An Optimized Return Power Control for DAB Converter Cluster with ISOP ConFiguration, 2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS) (2023), DOI: 10.1109/PEAS58692.2023.10395051.
- [6] Siddhant Bikram P., Tat-Thang L., Sunju K., Tuan Nguyen M., Sewan C., Analysis and Implementation of a DAB DC–DC Converter for OBC Application with Wide Output Voltage Range, 2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023 – ECCE Asia) (2023), DOI: 10.23919/ICPE2023-ECCEAsia54778.2023.10213911.
- [7] Mridul M., Indrajit S., EV Battery Charging using DAB DC–DC Converter with EPS and DPS modulations, 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS) (2023), DOI: 10.1109/SCEECS57921.2023.10063090.
- [8] Pengchao H., Xingcheng W., Yang S., Research on Flux-Weakening Control System of Interior Permanent Magnet Synchronous Motor Based on Fuzzy Sliding Mode Control, 2019 Chinese Control and Decision Conference (CCDC), pp. 3151–3156 (2019), DOI: 10.1109/CCDC.2019.8832483.
- [9] Zhipeng D., Jiamei J., Liang W., Adaptive Inverse Control of Piezoelectric Actuator with non-Smooth Hysteresis Model, 2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), pp. 401–407 (2022), DOI: 10.1109/SPAWDA56268.2022.10046038.
- [10] Xiaobin M., Jiuhe W., Weimin W., A modified multifrequency passivity-based control for shunt active power filter with model-parameter-adaptive capability, IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp. 70–769 (2018), DOI: 10.1109/TIE.2017.2733428.
- [11] Suleman S., Wenxiang Z., Huanan W., Fault-tolerant deadbeat model predictive current control for a five-phase PMSM with improved SVPWM, Chinese Journal of Electrical Engineering, vol. 7, no. 3, pp. 111–123 (2021), DOI: 10.23919/CJEE.2021.000030.
- [12] Javier Blanco R., Basil Mohammed A., Roberto Gonzalez H., Speed control of a magnetic accelerator using adaptive control techniques, IEEE Latin America Transactions, vol. 20, no. 3, pp. 488–495 (2022), DOI: 10.1109/TLA.2022.9667148.
- [13] Ortega R., van der Shaft A., Bernhard M., Escobar G., Interconnection and damping assignment passivity-based control of port controlled Hamiltonian systems, Automatica, vol. 38, pp. 585–596 (2002).
- [14] Xin L., Xiaodong F., Passive Backstepping Control of Dual Active Bridge Converter in Modular Three Port DC Converter, Electronics, vol. 12, no. 5, pp. 1–11 (2023), DOI: 10.3390/electronics12051074.
- [15] Marco C., Sriram J.K., Siddharth K.B., Port Controlled Hamiltonian Modeling and IDA-PBC Control of Dual Active Bridge Converters for DC Microgrids, IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 9065–9075 (2019), DOI: 10.1109/TIE.2019.2901645.
- [16] Escobar G., Chevreau D., Ortega R., Mendes E., An Adaptive Passivity-Based Controller for a Unity Power Factor Rectifier, IEEE Transactions on Control Systems Technology, vol. 9, no. 4, pp. 637–644 (2001), DOI: 10.1109/87.930975.
- [17] Xin C., Yang Z., Shanshan W., Jie C., Chunying G., Impedance-Phased Dynamic Control Method for Grid-Connected Inverters in a Weak Grid, IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 274–2834 (2017), DOI: 10.1109/TPEL.2016.2533563.
- [18] Rafael C., Fernando Mancilla D., Romeo O., Passivity-Based Control of a Grid- Connected Small-Scale Windmill with Limited Control Authority, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 1, pp. 247–259 (2013), DOI: 10.1109/JESTPE.2013.2285376.
- [19] Brayton R.K., Moser J.K., A theory of nonlinear networks I, Quarterly of Applied Mathematics, vol. 22, no. 1, pp. 1–33 (1964), DOI: 10.1090/qam/169746.
- [20] Krishna Chaitanya K., Michele C., Jacquelien M.A.S., Differentiation and Passivity for Control of Brayton–Moser Systems, IEEE Transactions on Automatic Control, vol. 66, no. 3, pp. 1087–1101 (2021), DOI: 10.1109/TAC.2020.2994317.
- [21] Kumari S., Rakesh M., Shambhu N.S., Brayton–Moser passivity-based controller for electric vehicle battery charger, CPSS Transactions on Power Electronics and Applications, vol. 6, no. 1, pp. 40–51 (2021), DOI: 10.24295/CPSSTPEA.2021.00004.
- [22] Tomoaki H., Implicit Model Predictive Control for Discretized Brayton–Moser Equations, 2022 22nd International Conference on Control, Automation and Systems (ICCAS), no. 22510332 (2023), DOI: 10.23919/ICCAS55662.2022.10003788.
- [23] Sonal G., Vivek P., Ragini M., Brayton–Moser Modeling of Solid-State Transformer, 2018 Condition Monitoring and Diagnosis (CMD), no. 18236333 (2018), DOI: 10.1109/CMD.2018.8535957.
- [24] Shipra K., Maurya R., Sharma S.N., Brayton–Moser passivity-based controller for electric vehicle battery charger, CPSS Transactions on Power Electronics and Applications, vol. 6, no. 1, pp. 40–51 (2021), DOI: 10.24295/CPSSTPEA.2021.00004.
- [25] Zhangjie L., Xin G., Mei S., Complete Large-Signal Stability Analysis of DC Distribution Network via Brayton–Moser’s Mixed Potential Theory, IEEE Transactions on Smart Grid, vol. 14, no. 2, pp. 866–877 (2023), DOI: 10.1109/TSG.2022.3198496.
- [26] Garcia Canseco E., Jeltsema D., Ortega R., Power-based control of physical systems, Automatica, vol. 46, no. 1, pp. 127–132 (2010), DOI: 10.1016/j.automatica.2009.10.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eaf2c8ed-9974-4797-96db-a32669293bd8