PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bonding of graphite to Cu with metal multi‑foils

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Graphite/Cu bonding is essential for the fabrication of graphite-based plasma-facing parts and graphite-type commutators. Transient liquid phase bonding of graphite/Cu has been conducted separately with Ti/Cu/Ti and Ti/Cu/Ni/Ti multi-foils. The interfacial microstructure and mechanical properties of the bonded joints have been characterized. For the joint with Ti/Cu/Ti multi-foils, complete melting of the Ti/Cu/Ti multi-foils and interdiffusion between the molten zone and the Cu substrate occur during the bonding process, leading to formation of Ti-Cu intermetallics in the bonding area. The liquid phase flowing toward the sidewall of the Cu substrate gives rise to a thickness of the bonding area far less than those of the as-received multi-foils. For the joint with Ti/Cu/Ni/Ti multi-foils, the bonding area can be divided into three parts (areas I, II and III). The bonding areas I and III comprise Ti-Cu intermetallics and Ti(CuxNi1-x)2, while the bonding area II consists of an Ni layer and two thin TiNi3 reaction layers. The thickness of the whole bonding area is similar to those of the as-received multi-foils, indicating that addition of Ni foil can prevent the loss of liquid phase zone by inhibiting the excessive liquid phase formation. The addition of a Ni foil in bonding of the graphite/Cu may alleviate the joint residual stress by its intermediate coefficient of thermal expansion (CTE) to accommodate any thermal mismatch in the joint and by its superior ductility and plasticity, thus resulting in shear strength promotion of the joint with the Ti/Cu/Ni/Ti multi-foils by approximately 35% when compared to the Ti/Cu/Ti multi-foils.
Rocznik
Strony
art. no. e58, 2023
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
  • Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
autor
  • Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
autor
  • Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
  • Department of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
autor
  • Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
  • Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
  • Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
Bibliografia
  • 1. Diop S, Rigaud E, Cornuault PH, Grandais-Menant E, Bazin B. Experimental analysis of the vibroacoustic response of an electric window-lift gear motor generated by the contact between carbon brushes and commutators. J Vib Acoust Trans ASME. 2017;139(6):061002. https://doi.org/10.1115/1.4036869.
  • 2. Zhang LX, Zhang B, Sun Z, Tian XY, Lei M, Feng JC. Preparation of the graphene nanosheets reinforced AgCuTi based composite for brazing graphite and Cu. J Alloys Compd. 2019;782:981-5. https://doi.org/10.1016/j.jallcom.2018.11.407.
  • 3. Li C, Si XQ, Cao J, Qi JL, Dong ZB, Feng JC. Residual stress distribution as a function of depth in graphite/copper brazing joints via X-ray diffraction. J Mater Sci Technol. 2019;32:2470-6. https://doi.org/10.1016/j.jmst.2019.07.023.
  • 4. Zhang J, Wang TP, Liu CF, He YM. Effect of brazing temperature on microstructure and mechanical properties of graphite/copper joints. Mater Sci Eng A. 2014;594:26-31. https://doi.org/10.1016/j.msea.2013.11.059.
  • 5. Mao YW, Wang S, Peng LX, Deng QR, Zhao P, Guo BB, Zhang YZ. Brazing of graphite to Cu with Cu50TiH2+C composite filler. J Mater Sci. 2016;51(4):1671-9. https://doi.org/10.1007/s10853-015-9415-0.
  • 6. Mao YW, Yu S, Zhang YZ, Guo BB, Ma ZB, Deng QR. Microstructure analysis of graphite/Cu joints brazed with (Cu-50TiH2)+B composite filler. Fusion Eng Des. 2015;100:152-8. https://doi.org/10.1016/j.fusengdes.2015.05.011.
  • 7. Jiang QY, Wang YJ, Xu HM, Ma XJ, Wang SG, Mao YW. Transient liquid phase bonding of graphite to Ti6Al4V alloy. Sci Technol Weld Joining. 2022;27(8):615-20. https://doi.org/10.1080/13621718.2022.2095195.
  • 8. Lin JC, Huang M, Yang WQ, Xing LL. Degradation kinetics of Ti-Cu compound layer in transient liquid phase bonded graphite/copper joints. Sci Rep. 2018;8(1):1-11. https://doi.org/10.1038/s41598-018-33446-3.
  • 9. Kang YH, Feng KM, Zhang WT, Mao YW. Microstructural and mechanical properties of CFC composite/Ti6Al4V joints brazed with Ag-Cu-Ti and refractory metal foils. Arch Civ Mech Eng. 2021;21(3):113. https://doi.org/10.1007/s43452-021-00268-6.
  • 10. Gao YA, Huang LJ, Bao Y, An Q, Sun Y, Zhang R, Geng L, Zhang J. Joints of TiBw/Ti6Al4V composites- Inconel 718 alloys dissimilar joining using Nb and Cu interlayers. J Alloys Compd. 2020;822:153559. https://doi.org/10.1016/j.jallcom.2019.153559.
  • 11. Hao ZT, Wang DP, Yang ZW, Wang Y. Microstructure and mechanical properties of Ti2AlNb alloy and C/C composite joints brazed with Ag-Cu-Zn and Ag-Cu-Zn/Cu/Ag-Cu-Ti filler metals. Arch Civ Mech Eng. 2019;19(4):1083-94. https://doi.org/10.1016/j.acme.2019.04.008.
  • 12. Xing LL, Lin JC, Huang M, Yang WQ. Joining of graphite to copper with Nb Interlayer: microstructure and mechanical properties. Adv Eng Mater. 2019;21(2):1800810. https://doi.org/10.1002/adem.201800810.
  • 13. Duan Y, Mao YW, Xu ZM, Deng QR, Wang GM, Wang SG. Joining of graphite to Ti6Al4V alloy using Cu-based fillers. Adv Eng Mater. 2019;21(11):1900719. https://doi.org/10.1002/adem.201900719.
  • 14. Norouzi E, Shamanian M, Atapour M, Khosravi B. Diffusion brazing of Ti-6Al-4V and AISI 304: an EBSD study and mechanical properties. J Mater Sci. 2017;52(20):12467-75. https://doi.org/10.1007/s10853-017-1376-z.
  • 15. Elrefaey A, Tillmann W. Evaluation of transient liquid phase bonding between titanium and steel. Adv Eng Mater. 2009;11(7):556-60. https://doi.org/10.1002/adem.200900021.
  • 16. Vidyuk TM, Dudina DV, Esikov MA, Mali VI, Anisimov AG, Bokhonov BB, Batraev IS. Pulsed current-assisted joining of copper to graphite using Ti-Cu brazing layers. Mater Today Proc. 2020;25:377-80. https://doi.org/10.1016/j.matpr.2019.12.095.
  • 17. Wei YN, Niu R, Guo HL, Luo YG, Zou JT. Microstructure and performance of graphite/copper joints by brazing with different interfacial structures. Adv Eng Mater. 2022;24(5):2101161. https://doi.org/10.1002/adem.202101161.
  • 18. Okamoto H, Schlesinger ME, Mueller EM. ASM Handbook Volume 3: Alloy Phase Diagrams. Ohio(OH): ASM International; 2016.
  • 19. Mao YW, Peng LX, Wang S, Xi LX. Microstructural characterization of graphite/CuCrZr joints brazed with CuTiH2Ni-based fillers. J Alloys Compd. 2017;716:81-7. https://doi.org/10.1016/j.jallcom.2017.05.019.
  • 20. Buenconsejo PJS, Zarnetta R, Konig D, Savan A, Thienhaus S, Ludwig A. A new prototype two-phase (TiNi)-(β-W) SMA system with tailorable thermal hysteresis. Adv Funct Mater. 2011;21(1):113-8. https://doi.org/10.1002/adfm.201001697.
  • 21. Watanabe M, Adachi M, Fukuyama H. Density measurement of Ti–X (X= Cu, Ni) melts and thermodynamic correlations. J Mater Sci. 2019;54(5):4306-13. https://doi.org/10.1007/s10853-018-3098-2.
  • 22. Arroyave R, Eagar TW. Metal substrate effects on the thermochemistry of active brazing interfaces. Acta Mater. 2003;51(16):4871-80. https://doi.org/10.1016/S1359-6454(03)00330-6.
  • 23. Konieczny M. Processing and microstructural characterisation of laminated Ti-intermetallic composites synthesised using Ti and Cu foils. Mater Lett. 2018;62(17-18):2600-2. https://doi.org/10.1016/j.matlet.2007.12.067.
  • 24. Xiong JT, Peng Y, Zhang H, Li JL, Zhang FS. Microstructure and mechanical properties of Al-Cu joints diffusion-bonded with Ni or Ag interlayer. Vacuum. 2018;147:187-93. https://doi.org/10.1016/j.vacuum.2017.10.033.
  • 25. Hao XH, Dong HG, Li S, Xu XX, Peng L. Lap joining of TC4 titanium alloy to 304 stainless steel with fillet weld by GTAW using copper-based filler wire. J Mater Process Technol. 2018;257:88-100. https://doi.org/10.1016/j.jmatprotec.2018.02.020.
  • 26. Dai J, Yu B, Ruan Q, Ruan QD, Chu PK. Improvement of the laser-welded lap joint of dissimilar Mg alloy and Cu by incorporation of a Zn interlayer. Mater. 2020;13(9):2053. https://doi.org/10.3390/ma13092053.
  • 27. Zhong Z, Hinoki T, Kohyama A. Joining of silicon carbide to ferritic stainless steel using a W-Pd-Ni interlayer for high-temperature applications. Int J Appl Ceram Technol. 2010;7(3):338-47. https://doi.org/10.1111/j.1744-7402.2009.02461.x.
  • 28. Hynes NRJ, Velu PS, Raja MK, Jebaraj DJJ, Benita B. Simulation on graphite to copper joints in nuclear reactor applications by transient liquid phase bonding. Mater Today Proc. 2021;47:7095-8. https://doi.org/10.1016/j.matpr.2021.06.209.
  • 29. Zhong Z, Zhou Z, Ge C. Brazing of doped graphite to Cu using stress relief interlayers. J Mater Process Technol. 2009;209(5):2662-70. https://doi.org/10.1016/j.jmatprotec.2008.06.021.
  • 30. Gianchandani PK, Casalegno V, Smeacetto F, Ferraris M. Pressure-less joining of C/SiC and SiC/SiC by a MoSi2/Si composite. Int J Appl Ceram Technol. 2017;14(3):305-12. https://doi.org/10.1111/ijac.12631.
  • 31. Ba J, Ji X, Wang B, Li PX, Lin JH, Qi JL, Cao J. In-situ alloying of BNi2+Ni interlayer for brazing C/C composites and GH3536 Ni-based superalloy. J Manuf Process. 2021;67:52-5. https://doi.org/10.1016/j.jmapro.2021.04.061.
  • 32. Chen HS, Long CS, Wei TG, Gao W, Xiao HX, Che L. Effect of Ni interlayer on partial transient liquid phase bonding of Zr-Sn-Nb alloy and 304 stainless steel. Mater Des. 2014;60:358-62. https://doi.org/10.1016/j.matdes.2014.03.055.
  • 33. Niu JB, Wang Y, Yang ZW, Wang DP. Microstructure and mechanical properties of titanium-zirconium-molybdenum and Ti2AlNb joint diffusion bonded with and without a Ni interlayer. Adv Eng Mater. 2019;21(11):1900713. https://doi.org/10.1002/adem.201900713.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eaedf454-7a86-4806-a963-79a88bc744ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.