PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of different self-selected walking speeds in leveling of body center of mass, mechanical work and energy in healthy children

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the study was to analyze the general kinematics of the cycle, leveling of the center of mass and inverted pendulum model in school-age children when they walk at three different auto-selected speeds. Methods: The kinematics of walking cycle, angular actions that contribute to reducing the vertical displacement of body center of mass (pelvis, hip, knee and ankle) and pendulumlike determining variables (mechanical work, pendulum-like recovery and congruity percentage), were analyzed in children for three different self-selected speeds. Differences for each variable with the speed were tested by ANOVA with Bonferroni post-hoc analysis. Omega squared (ω2) was calculated for the values of the effect sizes. Results: None of the angular variables associated with the leveling of the vertical trajectory of body center of mass changed. Likewise, recovery and congruity percentage presented values similar to those obtained in previous studies and did not show significant changes with the speeds. Conclusions: Nevertheless, changes in horizontal mechanical work and cycle phases, indicate that at some point during the cycle the mechanical energy transfer may have been affected for speed changes. Our results warn about the implication that small changes in the speed during functional evaluations of gait in children may have.
Rocznik
Strony
125--131
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
  • Instituto Superior de Educación Física, Universidad de la República, Paysandú, Uruguay
  • Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
  • Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
Bibliografia
  • [1] BALBINOT G., SCHUCH C.P., BIANCHI OLIVEIRA H., PEYRÉ--TARTARUGA L.A., Mechanical and energetic determinants of impaired gait following stroke: segmental work and pendular energy transduction during treadmill walking, Biol. Open., 2020, 15, 9 (7), 051581, DOI: 10.1242/bio.051581.
  • [2] BENNETT B.C., RUSSELL S.D., ABEL M.F., The effects of ankle foot orthoses on energy recovery and work during gait in children with cerebral palsy, Clin. Biomech., 2012, 27 (3), 287–291, DOI: 10.1016/j.clinbiomech.2011.09.005.
  • [3] BIEWENER A.A., Patterns of mechanical energy change in tetrapod gait: pendula, springs and work, J. Exp. Zool. A. Comp. Exp. Biol., 2006, 305 (11), 899–911, DOI: 10.1002/ jez.a.334.
  • [4] CAVAGNA G.A., HEGLUND N.C., TAYLOR C.R., Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure, Am. J. Physiol., 1977, 233 (5), 243–246, DOI: 10.1152/ajpregu.1977.233.5.R243.
  • [5] CAVAGNA G.A., KANEKO M., Mechanical work and efficiency in level walking and running, J. Physiol., 1977, 268 (2), 467–481, DOI: 10.1113/jphysiol.1977.sp011866.
  • [6] CAVAGNA G.A., SAIBENE F.P., MARGARIA R., External work in walking, J. Appl. Physiol., 1963, 18, 1–9, DOI: 10.1152/ jappl.1963.18.1.1.
  • [7] CAVAGNA G.A., WILLEMS P.A., LEGRAMANDI M.A., HEGLUND N.C., Pendular energy transduction within the step in human walking, J. Exp. Biol., 2002, 205, 3413–3422.
  • [8] COHEN J., Statistical power analysis for the behavioral sciences, Lawrence Earlbaum Associates, 1988.
  • [9] DELLA CROCE U., RILEY P.O., LELAS J.L., KERRIGAN D.C., A refined view of the determinants of gait, Gait Posture, 2001, 14 (2), 79–84.
  • [10] DEJAEGER D., WILLEMS P.A., HEGLUND N.C., The energy cost of walking in children, Pflugers Arch., 2001, 441 (4), 538–543.
  • [11] DONELAN J.M., KRAM R., KUO A.D., Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking, J. Exp. Biol., 2002, 205 (23), 3717–3727.
  • [12] EDWARDS R.H.T., Biomechanics and energetics of muscular exercise, Muscle Nerve, 1978, 1 (2), 172, DOI: 10.1002/ mus.880010213.
  • [13] FÁBRICA G., JEREZ-MAYORGA D., SILVA-PEREYRA V., Pendular energy transduction in the different phases of gait cycle in post-stroke subjects, Hum. Mov. Sci., 2019, 66, DOI: 10.1016/j.humov.2019.06.006.
  • [14] FENN W.O., Work Against Gravity and Work Due to Velocity Changes In Running, Am. J. Physiol., 1930, 1, 93 (2), 433–462, DOI: 10.1152/ajplegacy.1930.93.2.433.
  • [15] VAN DEN HECKE A., MALGHEM C., RENDERS A., DETREMBLEUR C., PALUMBO S., LEJEUNE T.M., Mechanical work, energetic cost, and gait efficiency in children with cerebral palsy, J. Pediatr. Orthop., 2007, 27 (6), 643–647, DOI: 10.1097/BPO.0b013e318093f4c3.
  • [16] JOCHYMCZYK-WOŹNIAK K., NOWAKOWSKA-LIPIEC K., ZADOŃ H., WOLNY S., GZIK M., GORWA J., MICHNIK R., Gait Kinematics Index, Global Symmetry Index and Gait Deviations Profile: Concept of a new comprehensive methodof gait pathology evaluation, Acta Bioeng. Biomech., 2020, 22 (4).
  • [17] KIRMIZI M., SENGUL Y.S., ANGIN S., The effects of gait speed on plantar pressure variables in individuals with normal foot posture and flatfoot, Acta Bioeng. Biomech., 2020, 22, 267–282.
  • [18] KUO A.D., The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective, Hum. Mov. Sci., 2007, 26 (4), 617–656. DOI: 10.1016/j.humov.2007.04.003.
  • [19] VAN DER LINDEN M.L., KERR A.M., HAZLEWOOD M.E., HILLMAN S.J., ROBB J.E., Kinematic and kinetic gait characteristics of normal children walking at a range of clinically relevant speeds, J. Pediatr. Orthop., 2002, 22 (6), 800–806.
  • [20] MARIANA HARO D., Laboratorio de análisis de marcha y movimiento, Rev. Médica Clínica Las Condes, 2014, 25 (2), 237–247, DOI: https://doi.org/10.1016/S0716-8640(14)70034-3.
  • [21] MINETTI A.E., ARDIGÒ L.P., CAPODAGLIO E.M., SAIBENE F., Energetics and Mechanics of Human Walking at Oscillating Speeds, Am. Zool., 2001, 1, 41 (2), 205–210, DOI: 10.1093/icb/ 41.2.205.
  • [22] MINETTI A.E., GAUDINO P., SEMINATI E., CAZZOLA D., The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles, J. Appl. Physiol., 2013, 114 (4), 498–503, DOI: 10.1152/japplphysiol.00959.2012.
  • [23] NARDELLO F., ARDIGO L.P., MINETTI A.E., Measured and predicted mechanical internal work in human locomotion, Hum. Mov. Sci., 2011, 30 (1), 90–104, DOI: 10.1016/ j.humov.2010.05.012.
  • [24] PERRY J., ARAÚJO A.G.N., SCHONEBERGER B., DE FREITAS C.D., Análise de marcha, Manole, 2005.
  • [25] SAIBENE F., The mechanisms for minimizing energy expenditure in human locomotion, Eur. J. Clin. Nutr. England, 1990, 44, Suppl. 1, 65–71.
  • [26] SAIBENE F., MINETTI A.E., Biomechanical and physiological aspects of legged locomotion in humans, Eur. J. Appl. Physiol., 2003, 88 (4–5), 297–316, DOI: 10.1007/s00421-002-0654-9.
  • [27] SAUNDERS J.B., INMAN V.T., EBERHART H.D., The major determinants in normal and pathological gait, J. Bone Jt. Surg. Am., 1953, 35 (3), 543–558.
  • [28] SCHEPENS B., BASTIEN G.J., HEGLUND N.C., WILLEMS P.A., Mechanical work and muscular efficiency in walking children, J. Exp. Biol. England, 2004 (4), 587–596, DOI: 10.1242/ jeb.00793.
  • [29] SCHEPENS B., DETREMBLEUR C., Calculation of the external work done during walking in very young children, Eur. J. Appl. Physiol., 2009, 107 (3), 367–373, DOI: 10.1007/ s00421-009-1132-4.
  • [30] SCHWARTZ M.H., ROZUMALSKI A., The Gait Deviation Index: a new comprehensive index of gait pathology, Gait and Posture, 2008, 28 (3), 351–357, DOI: 10.1016/j.gaitpost.2008.05.001.
  • [31] STANSFIELD B.W., HILLMAN S.J., HAZLEWOOD M.E., LAWSON A.A., MANN A.M., LOUDON I.R., ROBB J.E., Sagittal joint kinematics, moments, and powers are predominantly characterized by speed of progression, not age, in normal children, J. Pediatr. Orthop., 2001, 21 (3), 403–411.
  • [32] WILLEMS P.A., CAVAGNA G.A., HEGLUND N.C., External, internal and total work in human locomotion, J. Exp. Biol., 1995, 198 (Pt 2), 379–393.
  • [33] WILLEMS P.A., SCHEPENS B., DETREMBLEUR C., Marcha normal, EMC – Kinesiterapia – Med. Física, 2012, 33 (2), 1–29, DOI: https://doi.org/10.1016/S1293-2965(12)61944-6.
  • [34] WINTER D.A., Biomechanics and Motor Control of Human Movement, Wiley, 2009.
  • [35] WORSTER K., VALVANO J., CAROLLO J.J., Sagittal plane coordination dynamics of typically developing gait, Clin. Biomech., 2015, 1, 30 (4), 366–372, DOI: 10.1016/ j.clinbiomech.2015.02.013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eaebbe92-a022-48a0-a7a0-a7ce96edee46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.