PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of decoupled pi controllers for two-input two-output networked control systems with intrinsic and network-induced time delays

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Proportional integral controller design for two-input two-output (TITO) networked control systems (NCSs) with intrinsic and network-induced time delays is studied in this paper. The TITO NCS consists of two delayed sub-systems coupled in a 1-1/2-2 pairing mode. In order to simplify the controller design, a decoupling method is first applied to obtain a decoupled system. Then, the controllers are designed based on the transfer function matrix of the obtained decoupled system and using the boundary locus method for determining the stability region and the well-known Mikhailov criterion for the stability test. A comparative analysis of the designed controllers and other controllers proposed in previous literature works is thereafter carried out. To demonstrate the validity and efficacy of the proposed method and to show that it achieves better results than other methods proposed in earlier literature works, the implementation in simulation of Wood–Berry distillation column model (methanol–water separation), a well-known benchmark for TITO systems, is carried out.
Rocznik
Strony
201--208
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
  • Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Kingdom of Saudi Arabia
Bibliografia
  • 1. Ajayi T., Oboh I. (2012), Determination Of Control Pairing for Higher Order Multi-Variable Systems by the Use of Multiple Ratios. Int, J, Eng&ScientificRes, 3(3),1–5.
  • 2. Astrom K.J., Johansson K.H., Wang, Q.G. (2002), Design of Decoupled PI Controllers for Two-By-Two Systems. In IEE Proceedings-Control Theory and Applications, 149, 74–81.
  • 3. Barker L.K. (1979), Mikhailov Stability Criterion for Time-Delayed Systems. Washington, DC.USA: NASA.
  • 4. Barrero F., Guevara J., Vargas E., Toral S., Vargas, M. (2014), Networked Transducers in Intelligent Transportation Systems Based on The IEEE 1451 Standard. Computer Standards Interfaces, 36(2), 300–311. doi:10.1016/j.csi.2012.05.004.
  • 5. Baruah G., Majhi S., Mahanta C. (2018), Auto-Tuning of PI Controllers for TITO Processes with Experimental Validation. International Journal of Automation and Computing, 16. doi:10.1007/s11633-018-1140-0.
  • 6. Chao G.-L., Han K.W. (1998), Robust Stability Analysis of Time-Delay Systems Using Parameter-Plane and Parameter-Space Methods. Journal of the Franklin Institute, 335(7), 1249–1262.
  • 7. de Aguiar A.P.V., Barros P. (2020), Evaluation and Redesign of The Inverted Decoupler : Open and Closed-Loop Approaches. Int .J. Control Autom.Syst.,18, 1435–1444. doi:0.1007/s12555-019-0371-3.
  • 8. Elahi A., Alfi A. (2017), Finite-Time H Control of Uncertain Networked Control Systems with Randomly Varying Communication Delays. ISA transactions, 69,65–88.
  • 9. El-Farra N., Mhaskar P. (2008), Special issue on ‘Control of Networked and Complex Process Systems’. Comput. Chem. Eng., 32(9), 1963–1963.
  • 10. Hajare V., Khandekar A., Patre B. (2017), Discrete Sliding Mode Controller with Reaching Phase Elimination for TITO Systems. ISA Transactions, 66, 32–45. doi:10.1016/j.isatra.2016.10.010.
  • 11. Hajare V., Patre B. (2015), Decentralized PID Controller for TITO Systems Using Characteristic Ratio Assignment with An Experimental Application. ISA transactions, 59, 385–97.
  • 12. Hamdy M., Ramadan A., Abozalam B. (2018), Comparative Study Of Different Decoupling Schemes for TITO Binary Distillation Column via PI Controller. IEEE/CAA Journal of Automatica Sinica, 5(4), 869–877. doi:10.1109/JAS.2016.7510040.
  • 13. Hazarika S., Chidambaram M. (2014), Design of Proportional Integral Controllers with Decouplers for Unstable Two Input Two Output Systems. Industrial & Engineering Chemistry Research, 53(15), 6467–6476. doi:10.1021/ie403791q.
  • 14. Heris P.C., Saadatizadeh Z., Babaei E. (2019), A New Two Input-Single Output High Voltage Gain Converter with Ripple-Free Input Currents and Reduced Voltage on Semiconductors. IEEE Transactions on Power Electronics, 34(8), 7693–7702. doi:10.1109/TPEL.2018.2880493.
  • 15. Hong L., Hongye S., Peng S., Zhan S., Zheng-Guang W. (2017), Estimation and Control for Networked Systems with Packet Losses without Acknowledgement. Springer, Cham. Switzerland. doi:10.1007/978-3-319-44212-9.
  • 16. Huang D., Nguang S. (2009), Dynamic Output Feed-Back Control for Uncertain Networked Control Systems with Random Network-Induced Delays. Int. J. Control Autom. Syst., 7(841), doi:10.1007/s12555-009-0517-9.
  • 17. Jeng J., Jian Y. (2017), Model-Free Simultaneous Design of Multiloop PID Controllers for TITO Interactive Processes with Time Delays. In 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 1033–1038. doi:10.23919/SICE.2017.8105580.
  • 18. Jin Q., Zhu L., Wang Q., Jiang, B. (2016), PI Controller Design for A TITO System Based on Delay Compensated Structure and Direct Synthesis. Canadian Journal of Chemical Engineering, 94(9), 1740–1754. doi:10.1002/cjce.22551.
  • 19. Jin Y., Kwak D., Kim K.J., Kwak K.S. (2014), Cyclic Prefixed Single Carrier Transmission in Intra-Vehicle Wireless Sensor Networked Control Systems.In2014 IEEE 79th Vehicular Technology Conference (VTC Spring),1–5.
  • 20. Khandekar A., Patre B. (2017), Decentralized Discrete Sliding Mode Controller for TITO Processes with Time Delay with Experimental Application. International Journal of Dynamics and Control, 5, 614—-628. doi:10.1007/s40435-015-0202-1.
  • 21. Koo J., Ha D., Park D., Roh H.J., Ryu S., Kim G.H., Baek K.H., Han C. (2017), Design of Optical Emission Spectroscopy Based Plasma Parameter Controller for Real-Time Advanced Equipment Control. Computers Chemical Engineering, 100, 38–47. doi:10.1016/j.compchemeng.2017.02.009.
  • 22. Li B., Wu J., Huang L. (2016), Improved H∞ Control for Networked Control Systems with Network-Induced Delay and Packet Dropout. J. Cent. South Univ., 23(5), 1215–1223.
  • 23. Li D.Z., He X., Song T.H., Jin, Q. (2019), Fractional Order IMC Controller Design for Two-Input-Two-Output Fractional Order System. International Journal of Control, Automation and Systems, 17. doi:10.1007/s12555-018-0129-3.
  • 24. Liu B., Liu Y. (2020), Mixed Event-Triggered Mechanism Modeling and Controlling for Networked Control Systems with Time-Varying Delays and Uncertainties. ASIAN JOURNAL OF CONTROL, 22(2), 803–817.
  • 25. Liu T., Zhang W., Gu, D. (2006), Analytical Design of Decoupling Internal Model Control (IMC) Scheme for Two-Input Two-Output (TITO) Processes with Time Delays. Industrial Engineering Chemistry Research, 45, 3149–3160. doi:10.1021/ie051129q.
  • 26. Liu Y.C. (2015), Robust Synchronization of Networked Lagrangian Systems and its Applications to Multi-robot Teleoperation. IET Control Theory & Applications, 9(1),129–139.
  • 27. Maghade D. Patre B.M. (2013), Pole Placement by PID Controllers to Achieve Time Domain Specifications for TITO Systems. Transactions of the Institute of Measurement and Control, 36, 506–522. doi:10.1177/0142331213508803.
  • 28. Mahapatro S.R. Subudhi B. (2020), A Robust Decentralized PID Controller Based on Complementary Sensitivity Function for a Multivariable System. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(10), 2024–2028. doi:10.1109/TCSII.2019.2943382.
  • 29. Mikhailov A. (1938), Method of Harmonic Analysis in Control Theory. (in russian), A Vlomatiku 2., i Telemechllnika, 3, 27-81.
  • 30. Mohamed Vall O.M (2020a), Artificial Neural Network-Based Smith Predictor for Compensating Random Time Delays Acting in Networked Control Systems. International Journal of Control and Automation, 13(1), 36–44.
  • 31. Mohamed Vall O.M (2020b), PI Controller Design for Networked Control Systems with Random Time Delay. International Journal of Emerging Trends in Engineering Research,8(1),114–118. doi:10.30534/ijeter/2020/15812020.
  • 32. Naik R.H., Kumar D., Sujatha P. (2020), Independent Controller Design for MIMO Processes Based on Extended Simplified Decoupler and Equivalent Transfer Function. Ain Shams EngineeringJournal, 11, 343–350.
  • 33. Pang Z., Liu G., Zhou D., Sun D. (2016), Data-Based Predictive Control for Networked Nonlinear Systems with Network-Induced Delay and Packet Dropout. IEEE Transactions on Industrial Electronics, 63(2), 1249–1257.doi:10.1109/TIE.2015.2497206.
  • 34. Park P. (2015), Power Controlled Fair Access Protocol for Wireless Networked Control Systems. Wireless Networks, 21, 1499–1516.
  • 35. Park P., Khadilkar H., Balakrishnan H., Tomlin C.J. (2014), High Confidence Networked Control for Next Generation Air Transportation Systems. IEEE Transactions on Automatic Control, 59(12), 3357–3372. doi:10.1109/TAC.2014.2352011.
  • 36. Qian G., Wei P., Ruan Z., Lu J.Q. (2017), A Low-Complexity Modulation Classification Algorithm for MIMO–OSTBC System. Circuits, Systems, and Signal Processing, 36. doi:10.1007/s00034-016-0428-y.
  • 37. Sharma A., Padhy P. (2017), Design and Implementation of PID Controller for The Decoupled Two In-Put Two Output Control Process. In 2017 4th International Conference on Power, Control Embedded Systems (ICPCES), 1–6. doi:10.1109/ICPCES.2017.8117666.
  • 38. Siljak D. (1966), Generalization of the Parameter Plane Method. IEEE Transactions on Automatic Control, 11(1), 63–70. doi:10.1109/TAC.1966.1098230.
  • 39. Sun Y., El-Farra N. (2012), Resource Aware Quasi-Decentralized Control of Networked Process Systems over Wireless Sensor Networks. Chemical Engineering Science, 69(1),93–106. doi: https://doi.org/10.1016/j.ces.2011.10.010.
  • 40. Tanaka Y., Ogata T., Imagawa, S. (2015), Decoupled Direct Tracking Control System Based on Use of A Virtual Track for Multilayer Disk with A Separate Guide Layer. Japan Society of Applied Physics, 54(9), 09MB03.
  • 41. Ustoglu I., Eren Y., Soylemez, M. (2016), Stabilizing Constant Controllers for Two-Input, Two-Output Systems with Reducible and Irreducible Characteristic Equations. Transactions of the Institute of Measurement and Control, 39. doi:10.1177/0142331216645649.
  • 42. Vargas F., Silva E., Chen J. (2013), Stabilization of Two-Input Two-Output Systems over SNR-Constrained Channels. Automatica, 49, 3133–3140. doi:10.1016/j.automatica.2013.07.031.
  • 43. Wang Q., Huang B., Guo X. (2000), Auto-Tuning of TITO Decoupling Controllers from Step Tests. ISA Transactions, 39(4), 407–418.
  • 44. Wang Y.J. (2011), Graphical Computation of Gain and Phase Margin Specifications-Oriented Robust PID Controllers for Uncertain Systems With Time-Varying Delay. Journal of Process Control, 21(4), 475–488.
  • 45. Yao W., Jiang L., Wu J.W.Q., Cheng S. (2015), Wide-Area Damping Controller for Power System Inter-Area Oscillations: A Networked Predictive Control Approach. IEEE Transactions on Control Systems Technology, 23(1), 27–36. doi:10.1109/TCST.2014.2311852.
  • 46. Zhang W., Branicky M., Phillips S. (2001), Stability of Networked Control Systems. IEEE Control Systems Magazine, 21(1), 84–99. doi:10.1109/37.898794.
  • 47. Zhang X., Zheng Y., Lu G. (2006), Stochastic Stability of Networked Control Systems with Network-Induced Delay and Data Dropout. In Proceedings of the45th IEEE Conference on Decision and Control, 5006–5011. doi:10.1109/CDC.2006.376970.
  • 48. Zhuang M., Atherton D.P. (1993), PID Controller Design for A TITO System. In 1993 American Control Conference, 3176–3177. doi:10.23919/ACC.1993.4793493.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eae8907c-8663-4088-a765-7d01d07318dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.