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Abstract: Proportional integral controller design for two-input two-output (TITO) networked control systems (NCSs) with intrinsic  
and network-induced time delays is studied in this paper. The TITO NCS consists of two delayed sub-systems coupled in a 1-1/2-2 pairing 
mode. In order to simplify the controller design, a decoupling method is first applied to obtain a decoupled system. Then, the controllers  
are designed based on the transfer function matrix of the obtained decoupled system and using the boundary locus method for determining 
the stability region and the well-known Mikhailov criterion for the stability test. A comparative analysis of the designed controllers and other 
controllers proposed in previous literature works is thereafter carried out. To demonstrate the validity and efficacy of the proposed method 
and to show that it achieves better results than other methods proposed in earlier literature works, the implementation in simulation  
of Wood–Berry distillation column  model (methanol–water separation), a well-known benchmark for TITO systems, is carried out. 
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1. INTRODUCTION 

Several processes in industry, such as heat exchange, 
distillation process, and chemical reactions and so on, require the 
control of two or more output variables. In turn, the control of 
output variables requires the manipulation of two or more input 
variables(Ajayi and Oboh, 2012); such systems are known as 
multi-input multi-output (MIMO) systems. The most common form 
of MIMO system is a two-input two-output (TITO) system (Zhuang 
and Atherton, 1993). The problem of control of TITO systems has 
attracted the attention of many researchers (see: Hamdy et 
al.,2018;Baruah et al.,2018;Heris et al.,2019; Li et al.,2019; 
Ustoglu et al., 2016; Qian et al.,2017; Vargas et al.,2013; 
Maghade and Patre,2013; and references therein). In a TITO 
system, the interaction between loops makes analysis and design 
of the controller a very difficult task, and this task becomes more 
difficult and complex when the system to be controlled involves 
intrinsic time delays. Therefore, many of the methods dealing with 
TITO system control proposed in the literature have been 
interested in reducing the interaction loops by using a decoupling 
technique in a way that a change in each of the two loops does 
not affect the other (see: Tanaka et al., 2015; Hazarika and 
Chidambaram, 2014;Mahapatro and Subudhi, 2020;and 
references therein). Other research works existing in the literature 
have been interested on the control of TITO systems with time 
delays (see: Jeng and Jian, 2017; Jin et al., 2016; Liu et al., 2006; 
Khandekar and Patre, 2017; Hajare et al., 2017; and references 
therein).  

On the other hand, networked control systems (NCSs), which 
are systems in which a band-limited network is used by the plant, 

sensor and controller to share control signals and information 
among them, have many advantages in terms of reduction of 
wiring, lower maintenance cost, increased system agility, ease of 
information sharing and so on (Hong et al., 2017), compared to 
traditional point to point control systems in which the components 
and devices are connected via wires. Due to their advantages, 
NCSs have found application in many fields, such as process 
control engineering (Sun and El-Farra, 2012; ElFarra and 
Mhaskar, 2008), teleportation (Liu, 2015), vehicle industry(Jin et 
al., 2014), power systems (Park, 2015; Yao et al., 2015), 
transportation systems (Park et al., 2014; Barrero et al., 2014) and 
so on. One of the major factors that make the control of NCSs a 
very challenging problem is the presence of inevitable time delay 
induced by the transmission of control signals and information 
over a network that may be used by others devices and systems. 
This justifies why many  of research papers related to the control 
of NCSs with network-induced time delay have been published 
over the past few decades(see: Li et al., 2016; Zhang et al., 2006; 
Huang and Nguang, 2009; Liu and Liu, 2020; Mohamed Vall, 
2020b; Pang et al., 2016; Mohamed Vall, 2020a; Elahi and Alfi, 
2017). However, to the author's best knowledge, in the literature, 
there are few research works related to the control of TITO NCSs 
with intrinsic and network-induced time delay (Wang et al., 2000; 
Sharma and Padhy, 2017; Astrom et al., 2002). Moreover, most of 
the approaches dealing with this problem are very complex and 
very time consuming or even not applicable in real-world control 
problems. 

 Motivated by the above discussion, we propose, in this paper, 
a simple and practicable method for the control of TITO NCSs 
with intrinsic and network-induced time delays. The proposed 
method comprises two steps: first, a decoupler for the TITO NCS 
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to be controlled is calculated; second, two decoupled proportional 
integral (PI) controllers for the augmented system, consisting of 
the obtained decoupler and the TITO NCS to be controlled, are 
separately designed using the boundary locus method for 
determining the stability region (Siljak, 1966; Chao and Han,1998; 
Wang,2011) and the Mikhailov criterion for stability test as 
presented by Barker (1979) and Mikhailov (1938).  

In summary, the main objectives of this work are as follows: 

 To design decoupled PI controllers that garantee robustness 
and good set point tracking, as well as good disturbance 
rejection, for TITO NCSs with intrinsic and network-induced 
time delays. 

 To carry out a comparative analysis of the designed 
controllers with other controllers proposed in previous 
literature works (Hajare and Patre, 2015) and show 
the superiority of the method proposed in this paper.  
The remainder of the paper is organized as follows. In Section 

2, the structure of TITO NCSs with network-induced time delays is 
presented. The proposed method for the control of TITO NCSs 
with intrinsic and network-induced time delays is presented in 
Section 3. In Section 4, a simulation example is given to show the 
validity and effectiveness of the proposed method. Conclusions 
are given in Section 5. 

2. PROBLEM FORMULATION 

As mentioned above, this research work deals with the control 
of TITO-NCSs with intrinsic and  network-induced time delays. 
Fig. 1 shows the structure of a TITO-NCS with network-induced 
delays. As one can notice in Fig. 1, there are three time delays 

affecting each sub-system of the whole system, which are as 
follows: 

 delay sensor-to-controller 𝜏(𝑠𝑖𝑐𝑖) (𝑖 = 1,2)  

 delay controller-to-actuator 𝜏(𝑐𝑖𝑎𝑖) (𝑖 = 1,2)  

 controller computation delay 𝜏(𝑐𝑖) (𝑖 = 1,2) 

Although controller computation time delay always exists, it is 
usually small compared to network-induced time delays and can 
be neglected.  

In this paper, for simplicity and without losing generality, we 
neglect the controller computation time  delay and assume that 
the network-induced delays affecting each sub-system are lumped 

together as one control time  delay i  given by the following 

expression: 

𝜏𝑖 = 𝜏(𝑠𝑖𝑐𝑖) + 𝜏(𝑐𝑖𝑎𝑖) (𝑖 = 1,2)                         (1) 

 ‘Depending on the medium access control (MAC) protocol of 
the control network, network-induced delay can be constant, time 
varying, or even random’ (Zhang et al., 2001). Here, we are 
considering constant network-induced delay, ‘which can be 
achieved by using an appropriate network protocol’ (Zhang et al., 
2001), and our objective is to design PI controllers to compensate 
for these time delays. The method proposed contains two steps. 
In the first step, the system is decoupled in order to simplify the 
controllers' design and to obtain controllers that can guarantee 
that changes in the reference signal of a sub-system do not affect 
the output of the other and vice versa. In the second step, for the 
decoupled system, PI   controllers    are     designed     utilizing 
the stability boundary locus method.  

 
Fig. 1. Structure of TITO-NCS with Network-Induced Time Delays  
           (NCS – networked control system; TITO – two-input two-output) 

3. PROPOSED METHOD 

3.1. Decoupling of the TITO system 

Consider the closed-loop TITO system shown in Fig.2, where 

𝑟1and 𝑟2 are reference signals;𝐶1(𝑠) and 𝐶2(𝑠) are two 

controllers to be designed;𝐺11(𝑠), 𝐺12(𝑠), 𝐺21(𝑠) and 𝐺22(𝑠) 

are the transfer functions of the system;𝜏1, 𝜏2,𝜏3 and 𝜏4 are the 

time delays; and𝑦1 and 𝑦2 are the outputs of the system.  
The cross-interaction between the input–output pairs makes 

the design of the controllers very hard and may – in many control 
problems – lead to undesirable effects. Therefore, to simplify the 
controller design and eliminate the effects of loop interactions as 
much as possible, the following decoupling method is used. 
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Fig. 2. 1-1/2-2 closed-loop TITO system with time delays  
           (TITO – two-input two-output) 

The transfer function matrix of the system shown in Fig.2 is 

𝐺(𝑠) = [
𝐺11(𝑠)𝑒−𝜏1𝑠 𝐺12(𝑠)𝑒−𝜏2𝑠

𝐺21(𝑠)𝑒−𝜏3𝑠 𝐺22(𝑠)𝑒−𝜏4𝑠].                       (2) 

Let the transfer function matrix of the decoupler be 

𝐷(𝑠) = [
𝐷11(𝑠) 𝐷12(𝑠)

𝐷21(𝑠) 𝐷22(𝑠)
] .               (3) 

The matrix D(s) should be chosen so that the matrix  

𝑃(𝑠) = 𝐺(𝑠)𝐷(𝑠)          (4) 

is diagonal.  
As mentioned above, many decoupling methods for TITO 

systems have been proposed in the literature. In this paper, we 
propose to use the decoupler whose transfer function matrix is 
given in previous studies (Koo et al., 2017; de A. Aguiar and 
Barros, 2020; Naik et al., 2020). 

𝐷(𝑠) = [
1

−𝐺12(𝑠)𝑒−(𝜏2−𝜏1)𝑠

𝐺11(𝑠)

−𝐺21(𝑠)𝑒−(𝜏3−𝜏4)𝑠

𝐺22(𝑠)
1

]              (5) 

Fig. 3 shows the structure of a TITO system with the proposed 

decoupler, where 𝑊12(𝑠) =
−𝐺12(𝑠)𝑒−(𝜏2−𝜏1)𝑠

𝐺11(𝑠)
and 𝑊21(𝑠) =

−𝐺21(𝑠)𝑒−(𝜏3−𝜏4)𝑠

𝐺22(𝑠)
. Notice that the decoupler is not causal if 

𝜏2 − 𝜏1 < 0or/and 𝜏3 − 𝜏4 < 0 (Wanget al., 2000). However, 
even if the decoupler is not causal, one can introduce simple 
modifications in its structure so that it becomes causal without 
affecting the decoupled system’s structure (Sharma and Padhy, 
2017). 

Inserting Eqs. (2) and (5) in Eq. (4) gives the transfer function 
matrix of the decoupled system as 

𝑃(𝑠) = [
𝑃11(𝑠) 0

0 𝑃22(𝑠)
] ,                        (6) 

where 𝑃11(𝑠) = 𝐺11(𝑠)𝑒−𝜏1𝑠 −
𝐺12(𝑠)𝑒−𝜏2𝑠𝐺21(𝑠)𝑒−(𝜏3−𝜏4)𝑠

𝐺22(𝑠)
 and  

𝑃22(𝑠) = 𝐺22(𝑠)𝑒−𝜏4𝑠 −
𝐺21(𝑠)𝑒−𝜏3𝑠𝐺12(𝑠)𝑒−(𝜏2−𝜏1)𝑠

𝐺11(𝑠)
. 

Based on the above decoupled system, PI controllers can be 

designed independently using the stability locus method, as 

presented in the following sub-sections.  

 
Fig. 3. Decoupling structure 

3.2. Calculation of decoupled PI controllers  

Suppose that network-induced time delays affect the 
decoupled system whose transfer function matrix is defined in Eq. 
(6). The closed-loop transfer functions of the sub-systems 
constituting the whole system are, thus, given by the following 
expressions: 

𝑇1(𝑠) =
𝐶1(𝑠){𝐺𝑀(𝑠)𝑒(−𝜏1𝑠)−𝐺𝐷(𝑠)𝑒−(𝜏2+𝜏3−𝜏4)𝑠}𝑒

−𝜏𝑁𝑖11𝑠

𝐺22(𝑠)+𝐶1(𝑠){𝐺𝑀(𝑠)𝑒(−𝜏1𝑠)−𝐺𝐷(𝑠)𝑒−(𝜏2+𝜏3−𝜏4)𝑠}𝑒
−𝜏𝑁𝑖11𝑠(7) 

𝑇2(𝑠) =
𝐶2(𝑠){𝐺𝑀(𝑠)𝑒(−𝜏4𝑠)−𝐺𝐷(𝑠)𝑒−(𝜏3+𝜏2−𝜏1)𝑠}𝑒

−𝜏𝑁𝑖22𝑠

𝐺11(𝑠)+𝐶2(𝑠){𝐺𝑀(𝑠)𝑒(−𝜏4𝑠)−𝐺𝐷(𝑠)𝑒−(𝜏3+𝜏2−𝜏1)𝑠}𝑒
−𝜏𝑁𝑖22𝑠(8) 

where𝐺𝑀(𝑠) = 𝐺11(𝑠)𝐺22(𝑠),𝐺𝐷(𝑠) = 𝐺12(𝑠)𝐺21(𝑠), 

𝐶1(𝑠)and 𝐶2(𝑠)are the two PI controllers to be designed and 

𝜏𝑁𝑖11and 𝜏𝑁𝑖22are the network-induced time delays that affect 

Loops 1–1 and 2–2, respectively. 
To determine the parameters of the controllers, the stability 

region locus method is used as follows. 

3.2.1. Determination of the parameters of 𝐶1(𝑠) 

Let: 

𝐶1(𝑠) = 𝛼1 +
𝛽1

𝑠
;                          (9) 

𝜏11 = 𝜏𝑁𝑖11 + 𝜏1;         (10) 

𝜏12 = 𝜏𝑁𝑖11 + (𝜏2 + 𝜏3 − 𝜏4).       (11) 

By inserting Eqs. (9), (10) and (11) in Eq. (7), we can express 

the transfer function 𝑇1(𝑠) as follows: 

𝑇1(𝑠) =
(𝛼1+

𝛽1
𝑠

){𝐺𝑀(𝑠)𝑒−𝜏11𝑠−𝐺𝐷(𝑠)𝑒−𝜏12𝑠}

𝐺22(𝑠)+(𝛼1+
𝛽1
𝑠

){𝐺𝑀(𝑠)𝑒−𝜏11𝑠−𝐺𝐷(𝑠)𝑒−𝜏12𝑠}
.     (12) 
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By substituting 𝑠 = 𝑗𝜔, decomposition of the numerators and 

denominators of 𝐺𝑀(𝑠), 𝐺𝐷(𝑠)and 𝐺22(𝑠) into their even and 
odd parts and using Euler's identity, one can express the system 
characteristic equation as follows: 

𝑅𝑄1
(𝜔, 𝛼1, 𝛽1) + 𝑗𝐼𝑄1

(𝜔, 𝛼1, 𝛽1) = 0.                     (13) 

where𝑅𝑄1
and 𝐼𝑄1

 are two functions in 𝜔, 𝛼1, 𝛽
1
 with constant 

real coefficients. 

Dropping 𝜔 for ease and equating 𝑅𝑄1
(𝜔, 𝛼1, 𝛽1)and 

𝐼𝑄1
(𝜔, 𝛼1, 𝛽1)to zero result in the following system of equations: 

{
𝑀11𝛼1 + 𝑀12𝛽1 = 𝑋1

𝑀21𝛼1 + 𝑀22𝛽1 = 𝑋2
        (14) 

where𝑀11, 𝑀12, 𝑀21, 𝑀22, 𝑋1and 𝑋2are functions in 𝜔 with 
constant real coefficients. 

Solving the equation system (14) for 𝛼1 and 𝛽
1
 gives 

{

𝛼1 =
𝑁𝛼1

𝐷𝛼1

𝛽1 =
𝑁𝛽1

𝐷𝛽1

.                        (15) 

where𝑁𝛼1
, 𝐷𝛼1

, 𝑁𝛽1
and𝐷𝛽1

 are functions in 𝜔 with constant 

real coefficients. 

Plotting the dependency relation between 𝛼1 and 𝛽1 and the 
axis 𝛽1 = 0 on the (𝛼1, 𝛽1)-plane splits the plane into two 
regions. One of these regions is a stability region of the system. 
To determine which region is a stability region, the Mikhailov 
criterion for stability test is used. Next, once the stability region is 

determined, the values of the parameters of 𝐶1(𝑠)that stabilise 
the system can be thus determined by choosing a point within the 
stability region(Chao and Han, 1998). 

3.2.2. Determination of the parameters of 𝐶2(𝑠) 

The parameters of 𝐶2(𝑠) can be determined in a way similar 

to that for𝐶1(𝑠). 
Let: 

𝐶2(𝑠) = 𝛼2 +
𝛽2

𝑠
 ;                       (16) 

𝜏22 = 𝜏𝑁𝑖22 + 𝜏4 ;        (17) 

𝜏21 = 𝜏𝑁𝑖22 + (𝜏3 + 𝜏2 − 𝜏1).       (18) 

By inserting Eqs. (16), (17) and (18) in Eq. (8), we can 

express the transfer function 𝑇2(𝑠) as follows: 

𝑇2(𝑠) =
(𝛼2+

𝛽2
𝑠

){𝐺𝑀(𝑠)𝑒−𝜏22𝑠−𝐺𝐷(𝑠)𝑒−𝜏21𝑠}

𝐺11(𝑠)+(𝛼2+
𝛽2

𝑠
){𝐺𝑀(𝑠)𝑒−𝜏22𝑠−𝐺𝐷(𝑠)𝑒−𝜏21𝑠}

.     (19) 

By substituting 𝑠 = 𝑗𝜔, decomposition of the numerators and 

denominators of 𝐺𝑀(𝑠), 𝐺𝐷(𝑠)and 𝐺11(𝑠) into their even and 
odd parts and using Euler's identity, one can express the system 
characteristic equation as follows: 

𝑅𝑄2
(𝜔, 𝛼2, 𝛽2) + 𝑗𝐼𝑄2

(𝜔, 𝛼2, 𝛽2) = 0.      (20) 

where𝑅𝑄2
and 𝐼𝑄2

 are two functions in 𝜔, 𝛼2, 𝛽
2
 with constant 

real coefficients. 

Dropping 𝜔 for ease and equating 𝑅𝑄2
(𝜔, 𝛼2, 𝛽

2
)and 

𝐼𝑄2
(𝜔, 𝛼2, 𝛽

2
)to zero result in the following equation system: 

{
𝐻11𝛼2 + 𝐻12𝛽2 = 𝑍1

𝐻21𝛼2 + 𝐻22𝛽2 = 𝑍2
.                       (21) 

where𝐻11, 𝐻12, 𝐻21, 𝐻22, 𝑍1and 𝑍2are functions in 𝜔 with 
constant real coefficients. 

Solving the equation system (21) for 𝛼2 and 𝛽
2
 gives 

{

𝛼2 =
𝑁𝛼2

𝐷𝛼2

𝛽2 =
𝑁𝛽2

𝐷𝛽2

             (22) 

where𝑁𝛼2
, 𝐷𝛼2

, 𝑁𝛽2
and𝐷𝛽2

 are functions in 𝜔 with constant 

real coefficients. 

Plotting the dependency relation between 𝛼2 and 𝛽2; and the 

axis 𝛽2 = 0 on the (𝛼2, 𝛽2)-plane splits the plane into two 
regions. One of them is a stability region of the system. To 
determine which region is a stability region, the Mikhailov criterion 
for stability test is used. Then, the values of the parameters of 
𝐶2(𝑠)that stabilise the system can be thus determined by 
choosing a point within the stability region (Chao and Han, 1998). 

4. SIMULATION EXAMPLE 

In this section, a simulation example is given to show the 
validity and efficacy of the proposed method.  

The simulation is carried out in Simulink and TrueTime in the 
environment of MatLab. The network communication mode is 
carrier-sense multiple access with collision detection(CSMA/CD; 
Ethernet), the transmission rate is 80 Kbit/s and  the network-
induced time delays that affect Loops 1–1 and 2–2 are 𝜏𝑁𝑖11 =

0.13 secand 𝜏𝑁𝑖22 = 0.17 sec, respectively. The sampling 

period is 0.02 sec. The process to be  controlled is a Wood–Berry 
distillation column model (methanol–water separation), which has 
the following transfer function matrix (Astrom et al., 2002): 

𝐺(𝑠) = [

12.8𝑒−𝑠

16.7𝑠+1

−18.9𝑒−3𝑠

21.0𝑠+1

6.6𝑒−7𝑠

10.9𝑠+1

−19.4𝑒−3𝑠

14.4𝑠+1

]          (23) 

The transfer function matrix of the decoupler calculated 
according to Eq. (5) is 

𝐷(𝑠) = [
1

1.48 (16.7𝑠+1)𝑒−2𝑠

21.0𝑠+1

0.34 (14.4𝑠+1)𝑒−4𝑠

10.9𝑠+1
1

] .     (24) 

The transfer function matrix of the decoupled system 
calculated according to Eq. (6) is 

𝑃(𝑠) = [
𝑃11(𝑠) 0

0 𝑃22(𝑠)
] ,         (25) 

where 𝑃11(𝑠) =
12.8𝑒−𝑠

16.7𝑠+1
−

6.43 (14.4𝑠+1)𝑒−7𝑠

(21.0𝑠+1)(10.9𝑠+1)
 and 𝑃22(𝑠) =

−19.4𝑒−3𝑠

14.4𝑠+1
+

9.77 (16.7𝑠+1)𝑒−9𝑠

(10.9𝑠+1)(21.0𝑠+1)
. 

Consequently, based on the decoupled system in Eq. (25) and 
taking into account that Loops 1–1 and 2–2  are affected by the 

network-induced time delays 𝜏𝑁𝑖11 = 0.13 sec and 𝜏𝑁𝑖22 =

0.17 sec, respectively, and using Eqs (7) and (8), the closed-loop 

transfer functions of the sub-systems  are obtained as follows: 
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𝑇1(𝑠) =
𝐶1(𝑠)(𝐴(𝑠)𝑒−𝑠+𝐵(𝑠)𝑒−7𝑠)𝑒−0.13𝑠

−19.4

14.4𝑠+1
+𝐶1(𝑠)(𝐴(𝑠)𝑒−𝑠+𝐵(𝑠)𝑒−7𝑠)𝑒−0.13𝑠

;          (26) 

𝑇2(𝑠) =
𝐶2(𝑠)(𝐴(𝑠)𝑒−3𝑠+𝐵(𝑠)𝑒−9𝑠)𝑒−0.17𝑠

12.8

16.7𝑠+1
+𝐶2(𝑠)(𝐴(𝑠)𝑒−3𝑠+𝐵(𝑠)𝑒−9𝑠)𝑒−0.17𝑠

;      (27) 

where𝐴(𝑠) =
−248.32

(16.7𝑠+1)(14.4𝑠+1)
, 𝐵(𝑠) =

124.74

(21.0𝑠+1)(10.9𝑠+1)
, and 

𝐶1(𝑠) = 𝛼1 +
𝛽1

𝑠
and 𝐶2(𝑠) = 𝛼2 +

𝛽2

𝑠
are the two PI 

controllers. 
Let us determine the parameters of 𝐶1(𝑠)and 𝐶2(𝑠)based on 

the theory presented in Sub-section 3.2 of this paper.  
By substituting Eq. (26) into Eq. (12), solving  Eqs (13)–(14) 

for 𝛼1 and 𝛽1, and plotting the dependency between the obtained 

values of 𝛼1 and 𝛽1 and the axis 𝛽1 = 0 on the (𝛼1, 𝛽1)-plane, 
we obtain Fig. 4. 

 
Fig. 4.𝛼1 versus 𝛽1 

As one can see from Fig. 4, the curve (𝛼1,𝛽1) and the axis 

𝛽1 = 0 split the (𝛼1, 𝛽1)-plane into two regions: Region (I) and  
Region (II).  

Now, let us choose the point (0.1532,0.0067) of Region (I) in 
Fig.4 and check whether the system in Eq. (26) is stable when 

one chooses the parameters of the controller 𝐶1(𝑠)as 𝛼1 =
0.1532 and𝛽1 = 0.0067. To check the stability, the Mikhailov 
criterion for stability test can be used as mentioned earlier in this 
paper. 

By determining the polynomial function 𝑄1(𝑗𝜔) for the 

transfer function 𝑇1(𝑠) given in Eq. (26) , 𝛼1 = 0.1532 and 

𝛽1 = 0.0067, as explained by Barker (1979) and Mikhailov 
(1938), we obtain the Mikhailov curve shown in Fig. 5. As one can 
see from Fig. 5, the system is stable since the Mikhailov stability 
criterion is fulfilled, as also reported by Barker (1979) and 
Mikhailov (1938). 

 
Fig. 5. Loop 1-1 Mikhailov curve for 𝛼1 = 0.1532, 𝛽1 = 0.0067 

In a similar way, one can determine the parameters of the 

controller 𝐶2(𝑠) as those of the controller 𝐶1(𝑠)were determined. 
By substituting (27) into (19), solving  the equations (20)-(21) for 

𝛼2 and 𝛽2, and plotting the dependency between the obtained 

values of 𝛼2 and 𝛽2 and the axis 𝛽2 = 0 on the (𝛼2, 𝛽2)- plan, 
we  obtain  Fig. 6. 

 
Fig. 6. 𝛼2 versus 𝛽2 

As one can see, from Fig. 6., the curve (𝛼2,𝛽2) and the axis 

𝛽2 = 0 split the (𝛼2, 𝛽2)- plan into two regions: Region (I) and  
Region (II). To determine which of them is a stability region of the 
system, let's choose the point (-0.0266,-0.0015)  of the  region (I) 
and use Mikhailov stability criterion  to check whether the system 
is stable when one chooses the parameters of the controller 
𝐶2(𝑠)as 𝛼2 = − 0.0266,𝛽2 = − 0.0015. 

By determining the polynomial function 𝑄2(𝑗𝜔) for the 

transfer function 𝑇2(𝑠) given in (27) , 𝛼2 = − 0.0266,𝛽2 =
− 0.0015, as explained in in (Barker, 1979) and (Mikhailov, 
1938), we obtain the Mikhailov curve shown in Fig. 7. As one can 
see, from Fig. 7., the Mikhailov stability criterion holds, as also 
reported in (Barker, 1979) and (Mikhailov, 1938), the system is, 
therefore stable. 

 
Fig. 7. Loop 2-2 Mikhailov curve for 𝛼2 = − 0.0266,𝛽2 = − 0.0015 

To verify the validity and efficacy of the proposed method, the 

obtained PI controllers: 𝐶1(𝑠) = 0.1532 +
0.0067

𝑠
, 𝐶2(𝑠) =

− 0.0266 −
 0.0015

𝑠
are applied to the both loops of the 

decoupled system. In the simulation, a step change in the 

reference signal 𝑟1 is made at 𝑡 = 50 secand a step change in 
the reference signal 𝑟2 is made at 𝑡 = 150 sec, respectively. 
Furthermore, to show the disturbance rejection performance of the 

obtained controllers, steps disturbance 𝑑1(𝑡) = 0.1 at  𝑡 =
450 sec and 𝑑2(𝑡) = 9 at 𝑡 = 450 sec are introduced to loop 
1 and loop 2, respectively. The simulation results of both set-point 
tracking and disturbance rejection are shown in Fig. 8 and Fig. 9, 
respectively. The performance metrics: Settling time (Ts) , Integral 
Absolute Error (IAE), RMS tracking error (RMSE) and Total 
Variance (TV) are reported in Tab. 1. 
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Fig. 8. System outputs: (a) Reference signal (red solid line), 𝑦1 (loop1) output (blue dashed line) obtained using the proposed method and 𝑦1 (loop1)  

output (black dot-dash lines) obtained using the method proposed in (Hajare and Patre, 2015) (b) refence signal (red solid line), 𝑦2 (loop2) output 

(blue dashed line) obtained using the proposed method and 𝑦2 (loop2) output (black dot-dash lines) obtained using the method  

proposed in (Hajare and Patre, 2015) 

 
Fig. 9. System outputs with disturbance rejection: (a) Reference signal (red solid line), 𝑦1 (loop1) output (blue dashed line) obtained using the proposed 

method and 𝑦1 (loop1) output (black dot-dash lines) obtained using the method proposed in (Hajare and Patre, 2015) (b) refence signal  

(red solid line), 𝑦2 (loop2) output (blue dashed line) obtained using the proposed method and 𝑦2 (loop2) output (black dot-dash lines)  

obtained using the method proposed in (Hajare and Patre, 2015) 

Tab.1. Performance metrics

Controllers Input-output Ts (sec) RMSE IAE TV 

Proposed decoupled PI controllers 
𝑢1-𝑦1 

𝑢2-𝑦2 

41 

130 

0.09 

13.81 
12.1131091 0.008174.6 

(PID) controllers proposed 
in Hajare and Patre (2015) 

𝑢1-𝑦1 

𝑢2-𝑦2 

103.2 

119.2 

0.12 

16.1 
17.553586 0.011236.7 

IAE – integral absolute error; PI – proportional–integral; PID – proportional–integral–derivative;  
RMSE – root mean square tracking error; TV – total variance. 
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From Fig. 8, it can be seen that the proposed controllers 
guarantee excellent tracking of the system outputs to the set 
points and maintain the system stable in both loops. It can be also 
noticed that the change in the set point of Loop 1 does not affect 
the response output in the Loop 2 and vice-versa, the change in 
the set point of the Loop 2 does not affect the response output in 
the Loop 1. Additionally, the simulation results in Fig. 9 show that 
the obtained controllers also offer excellent disturbance rejection 
performance. Moreover, it is evident from the simulation results 
(shown in Figs. 8 and 9) and the performance metrics (reported in 
Tab. 1) that the proposed controllers achieve better results than 
the proportional–integral–derivative (PID) controllers proposed in 
a previous paper (Hajare and Patre, 2015). For example, it can be 
seen from Fig. 9 that the proposed controllers take less time and 
control action to achieve the steady state and zero steady-state 
error in case of load disturbance.   

5. CONCLUSIONS 

This paper proposes an approach for the design of decoupled 
PI controllers for TITO NCSs with intrinsic and network-induced 
time delays. A decoupler that can reduce interaction between 
loops and simplify the design of controllers is defined. Moreover, a 
method based on stability region locus and the Mikhailov criterion 
for stability test is proposed to determine the parameters of PI 
controllers to control a TITO NCS with intrinsic and network-
induced time delays. A comparative analysis of the designed 
controllers with other controllers proposed in previous research 
works has been carried out. The validity and efficacy of the 
proposed approach are shown through a simulation example, in 
which the well-known benchmark for TITO systems – the Wood–
Berry distillation column model (methanol–water separation) – is 
built in Simulink and TrueTime in the environment of  MatLab; 
network-induced time delays are included and PI controllers are 
designed based on the approach proposed. The simulation results 
show that the designed PI controllers guarantee very good 
tracking of the system outputs to the set points and maintain the 
system stable in both loops with excellent disturbance rejection 
performance. Moreover, the simulation results show that the 
proposed method achieves better results than other methods 
proposed in earlier literature works. 
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