Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We solve a linear chance constrained portfolio optimization problem using Robust Optimization (RO) method wherein financial script/asset loss return distributions are considered as extreme valued. The objective function is a convex combination of portfolio’s CVaR and expected value of loss return, subject to a set of randomly perturbed chance constraints with specified probability values. The robust deterministic counterpart of the model takes the form of Second Order Cone Programming (SOCP) problem. Results from extensive simulation runs show the efficacy of our proposed models, as it helps the investor to (i) utilize extensive simulation studies to draw insights into the effect of randomness in portfolio decision making process, (ii) incorporate different risk appetite scenarios to find the optimal solutions for the financial portfolio allocation problem and (iii) compare the risk and return profiles of the investments made in both deterministic as well as in uncertain and highly volatile financial markets.
Rocznik
Tom
Strony
83--117
Opis fizyczny
Bibliogr. 71 poz., fig., tab.
Twórcy
autor
- IME department, IIT Kanpur, Kanpur – 208016, India
- Department of Statistics and Econometrics, Faculty of Economic Sciences, University of Warsaw, 00-241 Warsaw, POLAND
autor
- Ernst & Young LLP, Gurgaon, Haryana – 122 002, INDIA
Bibliografia
- [1] Adida E. and Perakis G., A robust optimization approach to dynamic pricing and inventory control with no backorders. Mathematical Programming, 107, 2006, 97-129.
- [2] Atamtäurk A., Strong formulations of Robust Mixed 0-1 programming. Mathematical Programming: Series (B), 108, 2006, 235-250.
- [3] Atamtäurk A. and Zhang, M., Two-stage Robust Network flow and Design under Demand Uncertainty. Operations Research, 55, 2007, 662-673.
- [4] Ben-Tal A., Bertsimas D. and Brown D.B., A Soft Robust Model for Optimization under Ambiguity. Operations Research, 58, 2010, 1220-1234.
- [5] Ben-Tal A., Boyd S. and Nemirovski A., Extending the scope of robust optimization. Mathematical Programming: Series (B), 107, 2006, 63-89.
- [6] Ben-Tal A., El Ghaoui L. and Nemirovski A., Robust semidefinite programming in Semi-definite programming and applications, R. Saigal, Vandenberghe, H. Wolkowicz (Edited), Kluwer Academic Publishers, 2000a.
- [7] Ben-Tal A., El-Ghaoui L. and Nemirovski A., Robust optimization: Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2009.
- [8] Ben-Tal A., Golany B., Nemirovski A. and Vial J.P., Supplier-retailer flexible commitments contracts: A Robust Optimization Approach. Manufacturing and Service Operations Management, 7, 2005, 248-271.
- [9] Ben-Tal A., Goryashko A., Guslitzer E. and Nemirovski A., Adjustable Robust solutions of uncertain linear Programs. Mathematical Programming, 99, 2004, 351-376.
- [10] Ben-Tal A., Margalit T. and Nemirovski A., Robust modeling of multi-stage portfolio problems; High Performance Optimization, Frenk H., Roos C., Terlaky T., Zhang S. (Edited), Kluwer Academic Publishers, 2000b, 303–328.
- [11] Ben-Tal A. and Nemirovski A., Robust truss topology design via semi-definite programming. SIAM Journal on Optimization, 7, 1997, 991-1016.
- [12] Ben-Tal A. and Nemirovski A., Robust convex optimization. Mathematics of Operations Research, 23, 1998, 769-805.
- [13] Ben-Tal A. and Nemirovski A., Robust solutions to uncertain linear programs. Operations Research Letters, 25, 1999, 1–13.
- [14] Ben-Tal A. and Nemirovski A., Robust solutions of Linear Programming problems contaminated with uncertain data. Mathematical Programming: Series (A). 88, 2000c, 411-424.
- [15] Ben-Tal A. and Nemirovski A., Lectures on modern convex optimization: Analysis, algorithms and engineering applications, MPR-SIAM Series on Optimization, SIAM, Philadelphia, 2001a.
- [16] Ben-Tal A. and Nemirovski A., On approximate Robust counterparts of uncertain semi-definite and conic quadratic programs. Proceedings of 20th IFIP TC7 Conference on System Modelling and Optimization, July 23-27, Trier, Germany, 2001b.
- [17] Ben-Tal A. and Nemirovski A., Robust optimization–Methodology and Applications. Mathematical Programming: Series (B), 92, 2002a, 453-480.
- [18] Ben-Tal A. and Nemirovski A., On tractable approximations of uncertain linear matrix inequalities affected by interval uncertainty. SIAM Journal on Optimization, 12, 2002b, 811-833.
- [19] Ben-Tal A., Nemirovski A. and Roos C., Robust solutions of uncertain quadratic and conic-quadratic problems. SIAM Journal on Optimization, 13, 2002c, 535-560.
- [20] Bertsekas D.P., Dynamic Programming and Optimal Control (Volume: I). Athena Scientific, Belmont, Massachusetts, USA, 1995.
- [21] Bertsimas D. and Caramanis C., Finite adaptability in Multistage Linear Optimization. IEEE Transactions on Automatic Control, 55, 2007, 2751-2766.
- [22] Bertsimas D. and Brown David B., Constructing Uncertainty Sets for Robust Linear Optimization, Operations Research, 57, 2009, 1483-1495.
- [23] Bertsimas D., Brown D.B. and Caramanis C., Theory and Applications of Robust Optimization. SIAM Review, 53, 2011, 464-501.
- [24] Bertsimas D., Nohadani O. and Teo K.M., Robust Optimization for Unconstrained Simulation-based Problems. Operations Research, 58, 2010, 161-178.
- [25] Bertsimas D., Pachamanova D. and Sim M., Robust linear optimization under general norms. Operations Research Letters, 32, 2004, 510-516.
- [26] Bertsimas D. and Popescu I., Optimal inequalities in probability theory: A convex optimization approach. SIAM Journal of Optimization, 15, 2004, 780-800.
- [27] Bertsimas D. and Sim M., Robust discrete optimization and network flows. Mathematical Programming: Series: Series (B), 98, 2003, 49-71.
- [28] Bertsimas D. and Sim M., The price of robustness. Operations Research, 52, 2004, 35-53.
- [29] Bertsimas D. and Sim M., Tractable approximations to robust conic optimization problems. Mathematical Programming: Series (B), 107, 2006, 5-36.
- [30] Bertsimas D. and Thiele A., A robust optimization approach to supply chain management. Operations Research, 54, 2006, 150-168.
- [31] Bertsimas D. and Tsitsiklis J., Introduction to Linear Optimization. Athena Scientific, 1997.
- [32] Beyer H.-G. and Sendhoff B., Robust optimization–A comprehensive survey. Computer Methods in Applied Mechanics and Engineering, 196, 2007, 3190-3128.
- [33] Bienstock D, Histogram models for robust portfolio optimization. Journal of Computational Finance, 11, 2007, 1-64.
- [34] Birge J.R. and Louveaux F., Introduction to Stochastic Programming. Springer-Verlag, 1997.
- [35] Boyd S., El Ghaoui L., Feron E. and Balakrishnan V., Linear Matrix Inequalities in System and Control Theory. SIAM, 1994.
- [36] Boyd S., Kim S.J., Patil D. and Horowitz M., Digital circuit sizing via geometric programming. Operations Research, 53, 2005, 899-932.
- [37] Boyd S. and Vandenberghe L., Semidefinite programming. SIAM Review, 38, 1996, 49-95.
- [38] Boyd S. and Vandenberghe L., Convex Optimization. Cambridge University Press, 2004.
- [39] Chen W. and Sim M., Goal Driven Optimization. Operations Research. 57, 2009, 342-357.
- [40] Chen W., Sim M., Sun J. and Teo Chung-Piaw, From CVaR to Uncertainty Set: Implications in Joint Chance Constrained Optimization, Operations Research, 58, 2010, 470-485.
- [41] Chen X., Sim M. and Sun P., A robust optimization perspective to stochastic programming. Operations Research, 55, 2007, 1058-1071.
- [42] Chen X., Sim M., Sun P. and Zhang J., A linear-decision based approximation approach to stochastic programming. Operations Research, 56, 2008, 344-357.
- [43] Chen X. and Zhang Y., Uncertain Linear Programs: Extended Affinely Adjustable Robust Counterparts. Operations Research, 57, 2009, 1469-1482.
- [44] Dembo R., Scenario optimization, Annals of Operations Research, 30, 1991, 63-80.
- [45] Duzgun R. and Thiele A., Dynamic models of Robust optimization, in J. Cochran, editors, Encyclopedia of Operations Research and Management Science, Wiley, New York, 2011.
- [46] El Ghaoui L. and Lebret H., Robust solutions to least-square problems with uncertain data matrices. SIAM Journal of Matrix Analysis and Applications, 18, 1997, 1035–1064.
- [47] El Ghaoui L., Oustry F. and Lebret H., Robust solutions to uncertain semi-definite programs. SIAM Journal on Optimization, 9, 1998, 33–52.
- [48] El Ghaoui L., Maksim Oks. and Oustry F., Worst-Case Value-at-Risk and Robust Portfolio Optimization: A Conic Programming Approach. Operations Research, 51, 2003, 543-556.
- [49] Fabozzi Frank J., Huang D. and Zhou G., Robust portfolios: contributions from operations research and finance, Annals of Operations Research, 176, 2010, 191-220.
- [50] Fabozzi Frank J., Kolm P.N., Pachamanova D.A. and Focardi S.M, Robust Portfolio Optimization. Journal of Portfolio Management, 33, 2007, 40-48.
- [51] Goldfarb D. and Iyengar G., Robust Portfolio Selection Problems. Mathematics of Operation Research, 28, 2003, 1-38.
- [52] Gotoh J., Shinozaki K. and Takeda A., Robust Portfolio Techniques for Mitigating the Fragility of CVaR Minimization and Generalization to Coherent Risk Measures, Quantitative Finance, 13, 2013, 1621-1635.
- [53] Halldórsson B.V. and Tütüncü R.H., An interior-point method for a class of saddle point problems. Journal of Optimization Theory and Applications, 116, 2003, 559-590.
- [54] Huang D., Zhu Shu-Shang., Fabozzi Frank J. and Fukushima M., Portfolio selection with uncertain exit time: A robust CVaR approach, Journal of Economic Dynamics and Control, 32, 2008, 594–623.
- [55] Iyengar G., Robust dynamic programming. Mathematics of Operations Research, 30, 1994, 257-280.
- [56] Kall P. and Wallace S., Stochastic Programming. John Wiley & Sons, 1994.
- [57] Kouvelis P. and Yu G., Robust discrete optimization and its applications. Kluwer Academic Publishers, Norwell, MA, 1997.
- [58] Lahiri S.N., On the moving block bootstrap under long range dependence, Statistics and Probability Letters. 18, 1993, 405-413.
- [59] Lahiri S.N., Resampling methods for dependent data, Springer, New York, 2003.
- [60] Markowitz H., Portfolio Selection, The Journal of Finance, 7, 1952, 77-91.
- [61] Mulvey J., Vanderbei R. and Zenios S., Robust optimization of large-scale systems. Operations Research, 43, 1995, 264-281.
- [62] Nemhauser G.L. and Wolsey L.A., Integer and Combinatorial Optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization, USA, 1988.
- [63] Pinar M. and Tütüncü R., Robust profit opportunities in risky financial portfolios, Operations Research Letters, 33, 2005, 331-340.
- [64] Prékopa A., Stochastic Programming. Kluwer, 1995.
- [65] Shapiro A., On complexity of multistage stochastic programs. Operations Research Letters, 34, 2006, 1-8.
- [66] Sim M. and Goh J., Robust Optimization Made Easy with ROME. Operations Research, 59, 2011, 973-985.
- [67] Sniedovich M., The art and science of modeling decision-making under severe uncertainty, Decision Making in Manufacturing and Services, 1, 2007, 111-136.
- [68] Soyster A.L., Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21, 1973, 1154-1157.
- [69] Tütüncü R.H. and Koenig M., Robust asset allocation. Annals of Operations Research, 132, 2004, 157-187.
- [70] Zhou K., Doyle J.C. and Glove K., Robust and Optimal Control. Prentice-Hall, NJ, 1996.
- [71] Zhu S. and Fukushima M., Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management, Operations Research, 57, 2009, 1155-1168.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eadc22c3-cdcb-4490-a432-8e1e24352f82