Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A 2-rainbow dominating function of a graph G (V(G), E(G)) is a function ƒ that assigns to each vertex a set of colors chosen from the set {1,2} so that for each vertex with ƒ (v) = ∅ we have [formula].The weight of a 2RDF ƒ is defined as [formula] minimum weight of a 2RDF is called the 2-rainbow domination number of G, denoted by [formula].The vertex criticality index of a 2-rainbow domination of a graph G is defined as [formula] the edge removal criticality index of a 2-rainbow domination of a graph G is defined as [formula] and the edge addition of a 2-rainbow domination criticality index of G is defined as [formula] where G is the complement graph of G. In this paper, we determine the criticality indices of paths and cycles.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
563--–574
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- University of Medea, Algeria
autor
- University of Blida LAMDA-RO, Department of Mathematics B.P. 270, Blida, Algeria
Bibliografia
- [1] A. Bouchou, M. Blidia, Criticality indices of Roman domination of paths and cycles, Australasian Journal of Combinatorics 56 (2013), 103-112.
- [2] B. Bresar, T.K. Sumenjak, Note on the 2-rainbow domination in graphs, Discrete Applied Mathematics 155 (2007), 2394-2400.
- [3] B. Bresar, M.A. Henning, D.F. Rail, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008), 201-213.
- [4] A. Hansberg, N. Jafari Rad, L. Volkmann, Vertex and edge critical Roman domination in graphs, Utilitas Mathematica 92 (2013), 73-97.
- [5] J.H. Hattingh, E.J. Joubert, L.C. van der Merwe, The criticality index of total domination of path, Utilitas Mathematica 87 (2012), 285-292.
- [6] T.W. Haynes, CM. Mynhardt, L.C. van der Merwe, Criticality index of total domination, Congr. Numer. 131 (1998), 67-73.
- [7] N. Jafari Rad, Critical concept for 2-rainbow domination in graphs, Australasian Journal of Combinatorics 51 (2011), 49-60.
- [8] N. Jafari Rad, L. Volkmann, Changing and unchanging the Roman domination number of a graph, Utilitas Mathematica 89 (2012), 79-95.
- [9] D.P. Sumner, P. Blitch, Domination critical graphs, J. Combin. Theory Ser. B 34 (1983), 65-76.
- [10] H.B. Walikar, B.D. Acharya, Domination critical graphs, Nat. Acad. Sci. Lett. 2 (1979), 70-72.
- [11] Y. Wu, N. Jafari Rad, Bounds on the 2-rainbow domination number of graphs, Graphs and Combinatorics 29 (2013) 4, 1125-1133.
- [12] Y. Wu, H. Xing, Note on 2-rainbow domination and Roman domination in graphs, Applied Mathematics Letters 23 (2010), 706-709.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ead81441-7518-4ad6-82f2-7acb32c37ba1