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Abstract. A 2-rainbow dominating function of a graph G (V(G), E(G)) is a function f that
assigns to each vertex a set of colors chosen from the set {1,2} so that for each vertex
with f(v) = 0 we have UHEN(U)f(u) = {1,2}. The weight of a 2RDF f is defined as
w(f)= ZUEV(G) | f(v)]. The minimum weight of a 2RDF is called the 2-rainbow domination
number of G, denoted by 72-(G). The vertex criticality index of a 2-rainbow domination
of a graph G is defined as ci5,.(G) = (ZvGV(G)(F}QT (GQ) — v2r (G —0)))/ |V(G)], the edge
removal criticality index of a 2-rainbow domination of a graph G is defined as ci;°(G) =
(ZeeE(G)(VQ’“ (G) = v2r (G —€)))/ |E(G)| and the edge addition of a 2-rainbow domination
criticality index of G is defined as cif¢(G) = (EeEE@) (v2r (G) — v2r (G +€)))/ |E(é)‘,
where G is the complement graph of G. In this paper, we determine the criticality indices of
paths and cycles.
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1. INTRODUCTION

Let G = (V(G), E(G)) be a simple graph of order |V(G)| = |V| = n(G) and size
|E(G)| = m(G). The complement of G is the graph G = (V, E(G)), where E(G) =
{uv | wv ¢ E}. The neighborhood of a vertex v € V is Ng(v) = {u € V | uv € E} and
the closed neighborhood of v is Ng[v] = Ng(v) U {v}. The degree of a vertex v of G
is dg(v) = [Ng(v)|. The mazimum degree of G is A(G) = max{dg(v); v € V'}. The
path (respectively, the cycle) of order n is denoted by P, (respectively, C,,). We recall
that a leaf in a graph G is a vertex of degree one.

A 2-rainbow dominating function (2RDF) of a graph G is a function f that assigns
to each vertex a set of colors chosen from the set {1,2} such that for each vertex
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with f(v) = 0 we have U, cn(,f(u) = {1,2}. The weight of a 2RDF f is defined
as w (f) = X ev(e|f(v)]. The minimum weight of a 2RDF on a graph G is called
the 2-rainbow domination number of G, and is denoted by 79, (G). We also refer to
a yor-function in a graph G as a 2RDF with minimum weight. For a 7,,.-function f
on a graph G and a subgraph H of G we denote by f|x the restriction of f on V(H).
For references on rainbow domination in graphs, see for example [2,3,11,12].

For many graph parameters, the concept of criticality with respect to various
operations on graphs has been studied for several domination parameters such as
domination, total domination, Roman domination and 2-rainbow domination. Much
has been written about graphs where a parameter increases or decreases whenever an
edge or vertex is removed or added, by several authors. For references on the criticality
concept on various domination parameters see [4,7-10].

Since any 2RDF of a spanning graph of G is also a 2RDF of G, we have v2,.(G) <
Y2r (G — €) for every e € E(G) and v2,(G + €) < v2,-(G) for every e ¢ E(G). Note
that the removal of a vertex in a graph G may decrease or increase the 2-rainbow
domination number. On the other hand, it was shown in [7] that removing any edge
from G can increase by at most one the 2-rainbow domination number of G. Also
adding any edge to G can decrease by at most one the 2-rainbow domination number
of G.

For a graph G, we define the criticality index of 2-rainbow domination of a vertex
veV as

cig, (v) = Y2, (G) — 72, (G — v),

and the vertex criticality index of 2-rainbow domination of a graph G as

i3 (G) = (22, Ly gy i3 (0)) (@),

Also we define the edge remowval criticality index of a 2-rainbow domination of an edge
e € E(G) as
Cig,” (€) = Y2r(G) = 72r(G =€),

and the edge removal criticality index of 2-rainbow domination of a graph G as

i (G) = (X2, g €02 () /m(O).

Similarly, we define the edge addition criticality index of a 2-rainbow domination of

an edge e € E(G) as
Ci;_re (6) = 727(G) - fYQT(G + 6)7

and the edge addition criticality index of a 2-rainbow domination of a graph G as
—te o e —=
i3 (C) = (X2, e i3 (@) /m(©).

The criticality index was introduced in [5,6] and [1] for the total domination
number and Roman domination number, respectively.

In this paper, we determine exact values of the criticality indices of cycles and
paths.
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2. PRELIMINARY RESULTS

The following results will be of use throughout the paper.
Proposition 2.1 ([7]). Let G be a graph with mazimum degree A(G). Then

(i) v2r(G) — 1 < 49, (G — v) < 72, (G) + A(G) — 1 for any vertex v of G,
(i) 72r(G) < 72r(G — €) < 72,(G) + 1 for any edge e of G,
(iii) Y2r(G) — 1 < 72, (G + €) < 72, (G) for any edge e of G.

From the above, we can see that ci5,.(v) € {1 — A(G),...,0,1} for every v € V(G),
cin(e) € {—1,0} for every e € E(G) and cif(e) € {0,1} for every e € E(G).

Proposition 2.2 ([3]). For a cycle C,, with n > 3,

"YQT(PTL) -1 anEO(mOd4),

Yor (Py) otherwise.

Yar (Cpn) = [n/2| + [n/4] — |n/4]| = {

Proposition 2.3 ([2]). For a path P,,
Yor (Pn) = n/2] +1=[(n+1)/2].
Observation 2.4. For a cycle C,, withn > 7,

Y2r (Cn—4) = Y2r (Cn) —2.

3. THE VERTEX CRITICALITY INDEX OF A 2-RAINBOW DOMINATION
OF A CYCLE AND A PATH

In this section we determine the exact value of the vertex criticality index of a 2-rainbow
domination of a cycle and a path. Recall that ci}.(v) = 72,(G) — Y2,(G — v) and
ciy.(v) € {-1,0,1}, where G = C,, or P, and v € V(G).

Theorem 3.1. For every cycle C,, with n > 3,

0 in=0,1,3 (mod4),

cig,(Cn) = {1 ifn =2 (mod4).

Proof. Since removing a vertex v of a cycle C,, produces a path P,,_;, by Proposi-
tions 2.2 and 2.3 we have

cig, (v) = Yar (Cn) = v2r (Pu1) = [0/2] + [n/4] = [n/4] = [(n = 1) /2] — 1.

Therefore, we can easily see that ciy,.(v) = 0 for n =0,1,3 (mod4) and ciy,.(v) =1
for n = 2 (mod4), and so ¢i},.(Cy,) = 0 for n = 0,1,3 (mod4) and ¢}, (Cy,) = 1 for
n =2 (mod4). O

Let P, be a path whose vertices are labeled vy, va, ..., v,. Note that when a vertex
v; is removed from the path P,, we obtain two paths P,_; and P, _;.
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Theorem 3.2. For every nontrivial path P,,

2/n if n =0 (mod2),

cig,. (Pn) = {—(n—3)/2n ifn=1 (mod2).

Proof. If P, = v1,va,...,v, is a path, then by Proposition 2.3, we have

Y2r (Pn -

;) = Yor (Pi—1) +72r (Pn—i) ifi# 1 andn,
' Yor (Pn=1) ifi=lorn

_ [G—1)/2]+|(n—1)/2]+2 ifi#1andn,
[(n—1)/2]+1 if i =1 or n.

Four cases are distinguished with respect to the parity of ¢ and n.

Case 1. n =0 (mod2) and i = 1 (mod2), then o, (P, —v;) = [n/2] + 1 for i # 1
and 7o, (P, —v;) = |n/2] for i = 1. Therefore,
" 0 fori#1,
szr(vi) = Yor (Pn) - Yor (Pn - vi) = .
1 fori=1.

Case 2. n =0 (mod2) and ¢« = 0 (mod 2), then 73, (P, —v;) = |n/2| + 1 fori #n
and o, (P, — v;) = |n/2] for ¢ = n. Therefore,

) 0 fori=#n,
cige (Vi) = Yor (Pn) = Yor (P — vi) = {1 fori=n

Case 3. n =1 (mod2) and i = 1 (mod2), then o, (P, —v;) = [n/2] + 2 for i # 1
and i # n, and o, (P, —v;) = |n/2] + 1 for i = 1 or ¢ = n. Therefore,

—1 fori+# 1 and n,

Cize (Vi) = Y2r (Pn) = 72r (P —vi) = { 0 fori=1lorn

Case 4. n =1 (mod2) and ¢ = 0 (mod 2), then s, (P, —v;) = |[n/2| + 1 for all i.
Therefore,
cig,. (Vi) = y2r (Pn) — Yor (P —v;) = 0 for all 4.

Now we can establish the patterns for cil,. (v;), 1 <14 < n.

¢il (v5) = , o0, 0 O O, ..., 0, 1 for n =0 (mod 2),
A0, 0, -1, 0, =1, ..., =1, 0, 0 forn=1 (mod2),

which implies that if n = 0 (mod 2), then ci},. (P,) = 2/n and if n = 1 (mod 2), then
cil, (Pn) = —(n —3)/2n. O
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4. THE EDGE REMOVAL CRITICALITY INDEX
OF 2-RAINBOW DOMINATION OF A CYCLE AND A PATH

In this section we determine the exact value of the edge removal criticality index of
2-rainbow domination of a cycle and a path. Recall that ciy,?(e) = var(G) — Y2r (G — €)
and ciy(e) € {—1,0}, where G = C,, or P,, and e € E(G).
Theorem 4.1. For every cycle C,, with n > 3,
-1 4 = d4
cze(Cy = {71 =0 modd)
0 i n=1,2,3 (mod4).

Proof. Since removing any edge e of a cycle C,, produces a path P,,, by Propositions
2.2 and 2.3 we have

Cig, (€) = Y2r (Cn) = y2r (Pn) = [n/4] — [n/4] — 1.

Therefore, we can see that ciy(e) = —1 for n = 0 (mod4) and ciy, (e) = 0 for

n = 1,2,3 (mod4), and so ciy (Cp) = —1 for n = 0 (mod4) and ciy, (Cy) = 0
for n =1,2,3 (mod4). O

Let P, be a path whose vertices are labeled vy, vs, ..., v,. Note that when an edge
V0341 is removed from the path P,, we obtain two paths P; and P, _;.

Theorem 4.2. For every nontrivial path Py,
Ciz® (P) = —(n—2)/2(n—-1) zf n =0 (mod?2),
-1 if n=1 (mod?2).
Proof. Let P, = v1vsy...v,. Then by Proposition 2.3 we have
Yor (Pn = vivit1) = vor (Bi) + y2r (Po—i) = [i/2] + [(n —4) /2] + 2

for every ¢ with 1 <4 <n — 1. Two cases are distinguished with respect to the parity
of 1.
Case 1. i =1 (mod2). Then o, (P, — vjvi41) = [(n — 1) /2] + 2, and so

Cly, (Vivit1) = Y2r (Pn) = 72 (P — viviga) = [n/2] = [(n— 1) /2] — 1.

Therefore, cig,¢(viviy1) = 0 for n = 0 (mod 2) and iy, (viviy1) = —1 for n = 1(mod 2).
Case 2. i =0 (mod2). Then 7,2 (P, — v;v;+1) = [n/2] 4+ 2, and so

Clig, (Vivi1) = Yar (Pn) — y2r (P — vivig1) = [n/2] — [n/2] — 1,

Therefore, ciy,’(v;v;41) = —1 for every ¢ such that 1 <i <n — 1.
Now we can establish the patterns for ciy,S (v;vi41), 1 <i<n—1.
5 (0s01) = o, -1, ..., =1, 0, for n =0 (mod 2),
Cor WiVit1) =1, -1, ..., -1, -1, -1 forn=1 (mod?2)
which implies that if n = 0 (mod2), then ciyS (P,) = —(n—2)/2(n—1) and if

n = 1(mod 2), then ciy, (P,) = —1. O



568 Ahmed Bouchou and Mostafa Blidia

5. THE EDGE ADDITION CRITICALITY INDEX
OF 2-RAINBOW DOMINATION OF A CYCLE

In this section we give exact values of the edge addition criticality index of a 2-rainbow
domination of a cycle. Let G be a graph obtained from a cycle C,, by adding a chord
such that G is forming from two cycles C}, and Cy, where n =p + ¢ — 2.

We first describe a procedure and give a lemma that are fundamental in determining
the value cig,¢ (Cy,).

Procedure 5.1. Let Fy be the graph obtained from C,, by joining two non-adjacent
vertices u and v with an edge. Suppose that Fy has a cycle of length at least 7. Then
Fy has a subpath P = w,uy,us, us, ug,v of the cycle, and we form the graph Fs from
Fy by deleting vertices uy,us,us and uy and joining vertices w to v. We repeat this
process until eventually we obtain a graph Fy having two cycles of order 3, 4, 5 or 6.

Lemma 5.2. vo,.(F;11) = var (F;) — 2.

Proof. Let f be a 7ya-function on F;1q and n;11 = n(Fip1). If f(u) = f(v) = &,
or f(u) # @ and f(v) # @, then f is a 2RDF of C),,, with 72, (Fiy1) = w(f) >
Y2r(Cnipy) = vor (Fiy1),which implies that v, (Ch,, ;) = Y2r (Fit1). By Observation 2.4,
we have VQT(E-"-l) = /.YQT(CnH—l) = ’)/QT(CM) -2> ’YQT‘(Fi) — 2, since 72T(0n1‘+1) =
~Yor (Cp,—4). Now, without loss of generality, suppose that f (v) # @ and f (u) = @. If
f(v) = {1} or {1, 2}, then the extension g; of f on Fj;, such that ¢; () = f (x) for all
x € V(Fiq1), g1 (u2) = g1 (ug) = &, g1 (u1) = {1} and g; (u3) = {2}, is a 2RDF on
F;. If f (v) = {2}, then the function g, such that gs (x) = f (x) for all x € V (F;11),
92 (u2) = g2 (ug) = @, g2 (u1) = {2} and go (u3) = {1}, is a 2RDF on F;. So in all
cases there is a 2RDF g on F; with 72, (F;) < w(g) = var (Fig1) + 2.

Next, let f be a 7yg.-function on F;. If f(u) = f(v) = &, or f(u) # @ and
f (v) # @, then, by the same argument above, va,(F;) > vr2(Fit+1) + 2. Now, without
loss of generality, suppose that f (v) # @ and f (u) = @. If f (v) = {1} or {2}, then
there exists a yo,-function on F; such that f(ug) = f(us) = @ and (f(u1), f (u3)) =
({1},{2}) or ({2},{1}), respectively. Finally, If f(v) = {1,2}, then there exists

a vyor.-function on F; such that Zj’:1 |f(u;)| = 2. So in all cases the restriction of
f on Fiiq, is a 2RDF on Fj; with v2,.(Fit1) < w (f|Fi+1) = 72, (F;) — 2. Hence,
Yor(Fis1) = vor(Fi) — 2. =

Now we are ready to present the exact value ci,® (Cy). Recall that cif®(e) =
Yor (Cn) — Yor (Cp + €) and cigf(e) € {0, 1} for every e € E(G).

Theorem 5.3. For a cycle C,, withn > 3,

e 0 forn=0,1,3 (mod4),
ctzr (Cn) = {(n —2)/4(n—3) forn =2 (mod4).

Proof. Let F(nq,ng), where ny,ns € {3,4,5,6}, be the graph obtained from the cycle
Chy +no—2 by adding a chord such that F'(nq, no) is formed from two cycles C,,, and C,,, .
The graph F(n1,n2) will be called an elementary bicyclic graph.
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By applying Procedure 5.1 on a Cy, + ¢, where e € E (C,,) on the resulting graphs
as much as possible, at the end we obtain an elementary bicyclic graph F(nj,ns) of
order ni + ng — 2.

Let k1 and ko denote the number of groups of four vertices that were removed
from C), + e to obtain the cycles C,,, C,,, respectively, of the elementary bicyclic
graph F' = F(ny,ns). Thus

k1 + ko = (n —n(F)) /4. (5.1)
The number of nonnegative integer solutions of Equation (5.1) equals to
Clun(ry ars = (n—n(F) +4) /4.

By the symmetry of the vertices of C), and since every edge is computed two times
for n; = ng, the number of graphs C,, 4+ e corresponding to the elementary bicyclic
graph F' equals to

%(n— ’I’L(G) +4)/4 if ny = na,
n(n —n(G)+4)/4 if ny # no.

By Observation 2.4 and Lemma 5.2, we have that
Ci;_re(e) = 727'(0’”) - 727‘(071 + 6) = 727'(Cn1 +n2—2) - 727(F)

for some e € E (CTL)
Let F;, for i = 0,1, be the set of all elementary bicyclic graphs F' = F'(ni,ns) for
which cif¢(e) =i and set F = Fo U Fy. Therefore,

cigt(Cp) = <ZeeE(Cn) Ci;rre(e)> /m (Cn)
= (ZFEH (# of graphs C,, + e corresponding to F)) /m (Cin)
= (32, nln—n(F) +4)/8) /m (Cy) .

Note that m (Cy,) = n(n — 3)/2, so

Cite(Cr) = (ZFGE (n—n(F) +4)/4(n — 3)) . (5.2)

Then by applying Procedure 5.1, we consider four cases with respect to n.

Case 1. n =0 (mod 4). We have n(F) =0 (mod4). Note that n(F) =ny +ne —2=14
or 8 for each F' € F. So,

F ={F(3,3),F(4,6), F(5,5)} .

It is a routine matter to check that 73 = @ and Fy = F. So, by Equation (5.2),

we have ci3(C,,) = 0.
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Case 2. n =1 (mod 4). We have n(F) =1 (mod4). Note that n(F) =n; +ny —2=5
or 9 for each F' € F. So,
F={F(3,4),F(5,6)}.

We can easily check that 7y = @ and Fy = F. So, by Equation (5.2), we have
ci¢(C,) = 0.

2r n
Case 3. n =2 (mod 4). We have n(F') = 2 (mod4). Note that n(F) =n; +ny —2=26
or 10 for each F' € F. So,

F ={F(3,5),F(4,4),F (6,6)}.

It is easy to see that J; = {F(4,4)} and Fy = {F(3,5),F (6,6)}. So, by Equation
(5.2), we have

cigf(Cp) = (n —n(F(4,4)) +4)/4(n —3) = (n — 6 +4)/4(n — 3) = (n — 2)/4(n — 3).

Case 4. n =3 (mod4). We have n(F') = 3 (mod4). Note that n(F) =n; +na—2=17
for each F' € F. So,
F={F(3,6),F(4,5)}.

Again it is easy to see that F; = @ and Fy = F. So, by Equation (5.2), we have

ciz€(Cy) = 0, and the proof is complete. O

6. THE EDGE ADDITION CRITICALITY INDEX
OF A 2-RAINBOW DOMINATION OF A PATH

In this section we give exact values of the edge addition criticality index of a 2-rainbow
domination of a path P,.
We first give a lemma that is fundamental in determining the value cig, (P,).

Lemma 6.1. Let G = P, + uv be a graph obtained from a path P, of order n > 3 by
adding a chord (u,v) forming two paths P,, P, and a cycle C;, where n =p+q+t.
Then o, (P, 4+ uv) = 72, (Py,) — 1 if and only if either

1. n=4 anduveE(H), or
2.n#4andw e ={ecE(P,) |n=0(mod2), pg=0 and t = 0(mod 4)}.

Proof. If n = 4, then it is easy to see that G = K;3+ e or G = (4, and so
Yor (G) = v, (Py) — 1 for all edge uv of E (E) Now assume that n > 3 and n # 4. If G
is a cycle, then p = ¢ = 0 and ¢t = n. By Proposition 2.2, uv ¢ £ and 72, (G) = v2,-(Py)
forn =1,2,3 (mod4), and uv € £ and y2,(G) = 7v2,(F,,) — 1 for n =0 (mod 4). Now
we suppose that G is not a cycle, then G is obtained from the graph G’ = C,, + uv by
removing an edge e # wv. In this case p # 0 or ¢ # 0. We suppose, without loss of
generality, that p # 0. Let f be a ~yg,-function on G. We consider two cases:

Case 1. n = 1 (mod2). Then wv ¢ &, and by Proposition 2.1 (ii), we have
Y2r(G) > 72, (G’), and so from Theorem 5.3 and Proposition 2.2, we obtain that
Yor (G) = 2 (G') = Y2, (Cr) = Y2r(Pr). Since o, (G) < o, (P,) (see Proposition 2.1
(iii)), we deduce that yo,(G) = var (Py).
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Case 2. n =0 (mod 2). We have to examine three possibilities:

Subcase 2.1. ¢ # 0. Then wv ¢ £. If f(u) = f(v) =0, or f(u) # 0 and f(v) # 0, then
Yor(Py) < 72,-(G) and by Proposition 2.1 (iii), v2,.(G) = v2,(P,). Now we suppose,
without loss of generality, that f(u) # 0 and f(v) = 0. Let P,;;_1 be the subpath
of G defined by the vertices V(P,) U (V(Cy) — {v}). It is clear that the restriction of
fonV (Pyy—1)is a 2RDF on P,4,—1 and the restriction of f on V (P,) is a 2RDF
on P,. Thus, by Proposition 2.3,

Yor(G) = w(fip,py) +w (fir,) = vor(Ppri—1) + 72 (Py)
=[p+t)/21+(g+1) /2] 2 (p+1) 2+ (q+1) /2= (n+1)/2.
Hence v2,(G) > [(n+ 1) /2] = y2,(Py), and 50 Y2, (G) = 72, (FPy).

Subcase 2.2. ¢ = 0 and t = 1,2,3 (mod4). Then wv ¢ €. If f(u) = f(v) =0, or
f(u) # 0 and f(v) # 0, then similarly to Subcase 2.1, we have v2,.(G) = v2,.(P,,). Now
we suppose that f(u) =0 and f(v) # 0, or f(u) # 0 and f(v) = 0.

If f(u) =0 and f(v) # 0, then the restriction of f on V (P,) is a 2RDF on P, and

the restriction of f on V (Cy) — {u} is a 2RDF on P;_;. Thus, by Proposition 2.3,

Yor(G) = w (fip,) +w (fip_,) = Y2r(Pp) + v2r (Pi-1)
[(p+1) /2] +[t/2] > (p+1)/2+t/2= (n+1) /2.
Hence, ’VQT(G) > |—(’I’L + 1) /2-| = 727'(P’ﬂ) and so 727'(G) = 727'(Pn)'

If f(u) # 0, f(v) = @ and p > 2, then there is a yo,.-function on G such that
f(z) =0, where z € N (u) NV (P,), and so the restriction of f on V(P,) — {z} is
a 2RDF on the subpath P,_; and the restriction of f on V (C;) is a 2RDF on C.
Thus, by Propositions 2.3 and 2.2,

Yor(G) = w(fip, ) +w (fic,) = Yor(Pp—1) 4+ 72r(Ct)
=[p/2]1+[(t+1)/2] >p/2+(t+1)/2=(n+1)/2.
Hence, 72, (G) > [(n+1) /2] = v2,(Py) and s0 Y2, (G) = v2,-(FPr)-

If f(u) # 0, f(v) =0 and p = 1, then t = 1,3 (mod4) and t # 3, since n = 0
(mod2) and n # 4. Let x,v € N (u) N V(C}) and z be the unique leaf in G. We have
to examine possibilities for f depending on whether |f(u)] =2 or |f(u)| = 1.

If | f(u)| = 2, then there exists a yo,-function on G such that the restriction of f
on {u, z} is a 2RDF on the subpath Ps, the restriction of f on V (C; — {z,v,u}) is
a 2RDF on the subpath P,_3 and f(z) = @. Thus, by Proposition 2.3,

Yor(G) = w (fip,) +w (fip,_5) = v2r(P2) + Y2r(Piz3)
o [(t-2) /2] =1+ (t+1)/2=n/2+ 1.

Hence, 72T(G) > n/2 +1= 72T(Pn) and so 'YZT(G) = ,YQT(P'N,)'
If | f(u)| = 1, then the restriction of f on V (C}) is a 2RDF on C; and |f (2)| = 1.
Thus, by Propositions 2.3 and 2.2,

120 (G) = 1f () +w (fie,) = 1+ 72 (Ct)
=14+[t+1)/2]=14+(t+1)/2=n/2+1.
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Hence, v2,(G) > n/2 + 1 = 3, (P,) and so 2, (G) = Y2, (Py).

Subcase 2.3. ¢ =0 and t =0 (mod4). Then p =0 (mod 2) and so uv € €. Since C is
vertex transitive, there exists a 7yo,-function hy on Cy, with hy (u) = {1}. And there
exists a 7yo,-function hg on the subpath of G defined by the vertices V(P,) U {u}, with
ho (u) = {1}. Let h be a function on G defined as follows,

W) = hi(u) ?fx e V(Cy),
ho(z) ifx e V(R,).
It is easy to see that h is a 2RDF on G. Thus, by Propositions 2.3 and 2.2,
V2r(G) S w (h) = w (h1) +w(h2) =1 =72 (Ch) + y2r(Bpy1) — 1
=t/24 |(p+1) /2] +1-1=1t/2+p/2=n/2.
Hence, v2,(G) < y2,(Pn)—1, and so by Proposition 2.1 (iii), y2,(G) = 72, (P,) — 1. O
Now we are ready to present the exact value ci3, (P,). Recall that cij (e) =
Yor (Pn) — 72r (P, + €) and cifc(e) € {0,1} for every e € E(G).
Theorem 6.2. For a path P,,
1/(n—1) forn>5andn =0 (mod?2),
cig€ (P,) =10 forn >3 andn =1 (mod?2),
1 forn =4.
Proof. 1f n = 4, then G = K 3+ e or Cy, and it is easy to see that ciz¢ (e) = 1 for all
edge e of E (Py). Hence ciz¢ (P,) = 1.
Now assume that n > 3 and n # 4. Two cases are distinguished with respect to
the parity of n.

Case 1. n =1 (mod2). Then e ¢ € for all edge e of E (P,), and from Lemma 6.1,
ci3¢ (e) = 0 which implies that ¢i¢ (P,) = 0.

Case 2. n =0 (mod2). Then by Lemma 6.1, cif(e) = 1 for e € £, and cif°(e) =0
foreEE(PTJ —&. So

Ciérre (Pn) = (ZCEE(]DH) Ci;Te (e)) /m (E)
= (Zees(# of graphs P, + e corresponding to e)) /m (PTL) .

= |€| /m (Pr).

Therefore, o
cig, (Pn) = €] /m (Py) . (6.1)

Note that m (P,) = (n — 1)(n — 2)/2, and the number of edges of £ is
€] = 2(n/4) =1 for n =0 (mod4),
12(n—2)/4 for n =2 (mod4)
=n/2—1.
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Hence, by Equation (6.1), we obtain that
cig, (Pa) =2(n/2 = 1)/(n—1)(n - 2) =1/(n - 1),

and the proof is complete. O
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