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Abstract. A 2-rainbow dominating function of a graph G (V (G), E(G)) is a function f that
assigns to each vertex a set of colors chosen from the set {1, 2} so that for each vertex
with f(v) = ∅ we have

⋃
u∈N(v)f(u) = {1, 2}. The weight of a 2RDF f is defined as

w (f) =
∑

v∈V (G)|f(v)|. The minimum weight of a 2RDF is called the 2-rainbow domination
number of G, denoted by γ2r(G). The vertex criticality index of a 2-rainbow domination
of a graph G is defined as civ2r(G) = (

∑
v∈V (G)(γ2r (G) − γ2r (G− v)))/ |V (G)|, the edge

removal criticality index of a 2-rainbow domination of a graph G is defined as ci−e
2r (G) =

(
∑

e∈E(G)(γ2r (G)− γ2r (G− e)))/ |E(G)| and the edge addition of a 2-rainbow domination
criticality index of G is defined as ci+e

2r (G) = (
∑

e∈E(G)(γ2r (G) − γ2r (G+ e)))/
∣∣E(G)

∣∣,
where G is the complement graph of G. In this paper, we determine the criticality indices of
paths and cycles.
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1. INTRODUCTION

Let G = (V (G), E(G)) be a simple graph of order |V (G)| = |V | = n(G) and size
|E(G)| = m(G). The complement of G is the graph G = (V,E(G)), where E(G) =
{uv | uv /∈ E}. The neighborhood of a vertex v ∈ V is NG(v) = {u ∈ V | uv ∈ E} and
the closed neighborhood of v is NG[v] = NG(v) ∪ {v}. The degree of a vertex v of G
is dG(v) = |NG(v)|. The maximum degree of G is ∆(G) = max{dG(v); v ∈ V }. The
path (respectively, the cycle) of order n is denoted by Pn (respectively, Cn). We recall
that a leaf in a graph G is a vertex of degree one.

A 2-rainbow dominating function (2RDF) of a graph G is a function f that assigns
to each vertex a set of colors chosen from the set {1, 2} such that for each vertex
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with f(v) = ∅ we have
⋃

u∈N(v)f(u) = {1, 2}. The weight of a 2RDF f is defined
as w (f) =

∑
v∈V (G)|f(v)|. The minimum weight of a 2RDF on a graph G is called

the 2-rainbow domination number of G, and is denoted by γ2r(G). We also refer to
a γ2r-function in a graph G as a 2RDF with minimum weight. For a γ2r-function f
on a graph G and a subgraph H of G we denote by f|H the restriction of f on V (H).
For references on rainbow domination in graphs, see for example [2, 3, 11,12].

For many graph parameters, the concept of criticality with respect to various
operations on graphs has been studied for several domination parameters such as
domination, total domination, Roman domination and 2-rainbow domination. Much
has been written about graphs where a parameter increases or decreases whenever an
edge or vertex is removed or added, by several authors. For references on the criticality
concept on various domination parameters see [4, 7–10].

Since any 2RDF of a spanning graph of G is also a 2RDF of G, we have γ2r(G) ≤
γ2r(G − e) for every e ∈ E(G) and γ2r(G + e) ≤ γ2r(G) for every e /∈ E(G). Note
that the removal of a vertex in a graph G may decrease or increase the 2-rainbow
domination number. On the other hand, it was shown in [7] that removing any edge
from G can increase by at most one the 2-rainbow domination number of G. Also
adding any edge to G can decrease by at most one the 2-rainbow domination number
of G.

For a graph G, we define the criticality index of 2-rainbow domination of a vertex
v ∈ V as

civ2r(v) = γ2r(G)− γ2r(G− v),
and the vertex criticality index of 2-rainbow domination of a graph G as

civ2r(G) =
(∑

v∈V (G)
civ2r(v)

)
/n(G).

Also we define the edge removal criticality index of a 2-rainbow domination of an edge
e ∈ E(G) as

ci−e
2r (e) = γ2r(G)− γ2r(G− e),

and the edge removal criticality index of 2-rainbow domination of a graph G as

ci−e
2r (G) =

(∑
e∈E(G)

ci−e
2r (e)

)
/m(G).

Similarly, we define the edge addition criticality index of a 2-rainbow domination of
an edge e ∈ E(G) as

ci+e
2r (e) = γ2r(G)− γ2r(G+ e),

and the edge addition criticality index of a 2-rainbow domination of a graph G as

ci+e
2r (G) =

(∑
e∈E(G)

ci+e
2r (e)

)
/m(G).

The criticality index was introduced in [5, 6] and [1] for the total domination
number and Roman domination number, respectively.

In this paper, we determine exact values of the criticality indices of cycles and
paths.
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2. PRELIMINARY RESULTS

The following results will be of use throughout the paper.

Proposition 2.1 ([7]). Let G be a graph with maximum degree ∆(G). Then

(i) γ2r(G)− 1 ≤ γ2r(G− v) ≤ γ2r(G) + ∆(G)− 1 for any vertex v of G,
(ii) γ2r(G) ≤ γ2r(G− e) ≤ γ2r(G) + 1 for any edge e of G,
(iii) γ2r(G)− 1 ≤ γ2r(G+ e) ≤ γ2r(G) for any edge e of G.

From the above, we can see that civ2r(v) ∈ {1−∆ (G) , . . . , 0, 1} for every v ∈ V (G),
ci−e

2r (e) ∈ {−1, 0} for every e ∈ E(G) and ci+e
2r (e) ∈ {0, 1} for every e ∈ E(G).

Proposition 2.2 ([3]). For a cycle Cn with n ≥ 3,

γ2r (Cn) = bn/2c+ dn/4e − bn/4c =
{
γ2r(Pn)− 1 if n ≡ 0 (mod 4),
γ2r(Pn) otherwise.

Proposition 2.3 ([2]). For a path Pn,

γ2r(Pn) = bn/2c+ 1 = d(n+ 1) /2e .

Observation 2.4. For a cycle Cn with n ≥ 7,

γ2r (Cn−4) = γ2r (Cn)− 2.

3. THE VERTEX CRITICALITY INDEX OF A 2-RAINBOW DOMINATION
OF A CYCLE AND A PATH

In this section we determine the exact value of the vertex criticality index of a 2-rainbow
domination of a cycle and a path. Recall that civ2r(v) = γ2r(G) − γ2r(G − v) and
civ2r(v) ∈ {−1, 0, 1}, where G = Cn or Pn, and v ∈ V (G).

Theorem 3.1. For every cycle Cn with n ≥ 3,

civ2r(Cn) =
{

0 if n ≡ 0, 1, 3 (mod 4),
1 if n ≡ 2 (mod 4).

Proof. Since removing a vertex v of a cycle Cn produces a path Pn−1, by Proposi-
tions 2.2 and 2.3 we have

civ2r(v) = γ2r (Cn)− γ2r (Pn−1) = bn/2c+ dn/4e − bn/4c − b(n− 1) /2c − 1.

Therefore, we can easily see that civ2r(v) = 0 for n ≡ 0, 1, 3 (mod 4) and civ2r(v) = 1
for n ≡ 2 (mod 4), and so civ2r(Cn) = 0 for n ≡ 0, 1, 3 (mod 4) and civ2r(Cn) = 1 for
n ≡ 2 (mod 4).

Let Pn be a path whose vertices are labeled v1, v2, . . . , vn. Note that when a vertex
vi is removed from the path Pn, we obtain two paths Pi−1 and Pn−i.
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Theorem 3.2. For every nontrivial path Pn,

civ2r (Pn) =
{

2/n if n ≡ 0 (mod 2),
−(n− 3)/2n if n ≡ 1 (mod 2).

Proof. If Pn = v1, v2, . . . , vn is a path, then by Proposition 2.3, we have

γ2r (Pn − vi) =
{
γ2r (Pi−1) + γ2r (Pn−i) if i 6= 1 and n,
γ2r (Pn−1) if i = 1 or n

=
{
b(i− 1) /2c+ b(n− i) /2c+ 2 if i 6= 1 and n,
b(n− 1) /2c+ 1 if i = 1 or n.

Four cases are distinguished with respect to the parity of i and n.
Case 1. n ≡ 0 (mod 2) and i ≡ 1 (mod 2), then γ2r (Pn − vi) = bn/2c + 1 for i 6= 1
and γ2r (Pn − vi) = bn/2c for i = 1. Therefore,

civ2r(vi) = γ2r (Pn)− γ2r (Pn − vi) =
{

0 for i 6= 1,
1 for i = 1.

Case 2. n ≡ 0 (mod 2) and i ≡ 0 (mod 2), then γ2r (Pn − vi) = bn/2c + 1 for i 6= n
and γ2r (Pn − vi) = bn/2c for i = n. Therefore,

civ2r(vi) = γ2r (Pn)− γ2r (Pn − vi) =
{

0 for i 6= n,

1 for i = n.

Case 3. n ≡ 1 (mod 2) and i ≡ 1 (mod 2), then γ2r (Pn − vi) = bn/2c + 2 for i 6= 1
and i 6= n, and γ2r (Pn − vi) = bn/2c+ 1 for i = 1 or i = n. Therefore,

civ2r(vi) = γ2r (Pn)− γ2r (Pn − vi) =
{
−1 for i 6= 1 and n,

0 for i = 1 or n.

Case 4. n ≡ 1 (mod 2) and i ≡ 0 (mod 2), then γ2r (Pn − vi) = bn/2c + 1 for all i.
Therefore,

civ2r(vi) = γ2r (Pn)− γ2r (Pn − vi) = 0 for all i.

Now we can establish the patterns for civ2r (vi), 1 ≤ i ≤ n.

civ2r (vi) =
{

1, 0, 0, 0, 0, . . . , 0, 1 for n ≡ 0 (mod 2),
0, 0, −1, 0, −1, . . . , −1, 0, 0 for n ≡ 1 (mod 2),

which implies that if n ≡ 0 (mod 2), then civ2r (Pn) = 2/n and if n ≡ 1 (mod 2), then
civ2r (Pn) = −(n− 3)/2n.
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4. THE EDGE REMOVAL CRITICALITY INDEX
OF 2-RAINBOW DOMINATION OF A CYCLE AND A PATH

In this section we determine the exact value of the edge removal criticality index of
2-rainbow domination of a cycle and a path. Recall that ci−e

2r (e) = γ2r(G)− γ2r(G− e)
and ci−e

2r (e) ∈ {−1, 0}, where G = Cn or Pn, and e ∈ E(G).
Theorem 4.1. For every cycle Cn with n ≥ 3,

ci−e
2r (Cn) =

{
−1 if n ≡ 0 (mod 4),

0 if n ≡ 1, 2, 3 (mod 4).

Proof. Since removing any edge e of a cycle Cn produces a path Pn, by Propositions
2.2 and 2.3 we have

ci−e
2r (e) = γ2r (Cn)− γ2r (Pn) = dn/4e − bn/4c − 1.

Therefore, we can see that ci−e
2r (e) = −1 for n ≡ 0 (mod 4) and ci−e

2r (e) = 0 for
n ≡ 1, 2, 3 (mod 4), and so ci−e

2r (Cn) = −1 for n ≡ 0 (mod 4) and ci−e
2r (Cn) = 0

for n ≡ 1, 2, 3 (mod 4).

Let Pn be a path whose vertices are labeled v1, v2, . . . , vn. Note that when an edge
vivi+1 is removed from the path Pn, we obtain two paths Pi and Pn−i.
Theorem 4.2. For every nontrivial path Pn,

ci−e
2r (Pn) =

{
− (n− 2) /2 (n− 1) if n ≡ 0 (mod 2),
−1 if n ≡ 1 (mod 2).

Proof. Let Pn = v1v2 . . . vn. Then by Proposition 2.3 we have

γ2r (Pn − vivi+1) = γ2r (Pi) + γ2r (Pn−i) = bi/2c+ b(n− i) /2c+ 2

for every i with 1 ≤ i ≤ n− 1. Two cases are distinguished with respect to the parity
of i.
Case 1. i ≡ 1 (mod 2). Then γ2r (Pn − vivi+1) = b(n− 1) /2c+ 2, and so

ci−e
2r (vivi+1) = γ2r (Pn)− γ2r (Pn − vivi+1) = bn/2c − b(n− 1) /2c − 1.

Therefore, ci−e
2r (vivi+1) = 0 for n ≡ 0 (mod 2) and ci−e

2r (vivi+1) = −1 for n ≡ 1(mod 2).
Case 2. i ≡ 0 (mod 2). Then γr2 (Pn − vivi+1) = bn/2c+ 2, and so

ci−e
2r (vivi+1) = γ2r (Pn)− γ2r (Pn − vivi+1) = bn/2c − bn/2c − 1,

Therefore, ci−e
2r (vivi+1) = −1 for every i such that 1 ≤ i ≤ n− 1.

Now we can establish the patterns for ci−e
2r (vivi+1), 1 ≤ i ≤ n− 1.

ci−e
2r (vivi+1) =

{
0, −1, . . . , −1, 0, for n ≡ 0 (mod 2),
−1, −1, . . . , −1, −1, −1 for n ≡ 1 (mod 2)

which implies that if n ≡ 0 (mod 2), then ci−e
2r (Pn) = − (n− 2) /2 (n− 1) and if

n ≡ 1(mod 2), then ci−e
2r (Pn) = −1.
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5. THE EDGE ADDITION CRITICALITY INDEX
OF 2-RAINBOW DOMINATION OF A CYCLE

In this section we give exact values of the edge addition criticality index of a 2-rainbow
domination of a cycle. Let G be a graph obtained from a cycle Cn by adding a chord
such that G is forming from two cycles Cp and Cq, where n = p+ q − 2.

We first describe a procedure and give a lemma that are fundamental in determining
the value ci+e

2r (Cn).

Procedure 5.1. Let F1 be the graph obtained from Cn by joining two non-adjacent
vertices u and v with an edge. Suppose that F1 has a cycle of length at least 7. Then
F1 has a subpath P = w, u1, u2, u3, u4, v of the cycle, and we form the graph F2 from
F1 by deleting vertices u1, u2, u3 and u4 and joining vertices w to v. We repeat this
process until eventually we obtain a graph Fk having two cycles of order 3, 4, 5 or 6.

Lemma 5.2. γ2r(Fi+1) = γ2r(Fi)− 2.

Proof. Let f be a γ2r-function on Fi+1 and ni+1 = n (Fi+1). If f (u) = f (v) = ∅,
or f (u) 6= ∅ and f (v) 6= ∅, then f is a 2RDF of Cni+1 with γ2r(Fi+1) = w (f) ≥
γ2r(Cni+1) ≥ γ2r(Fi+1),which implies that γ2r(Cni+1) = γ2r(Fi+1). By Observation 2.4,
we have γ2r(Fi+1) = γ2r(Cni+1) = γ2r(Cni) − 2 ≥ γ2r(Fi) − 2, since γ2r(Cni+1) =
γ2r(Cni−4). Now, without loss of generality, suppose that f (v) 6= ∅ and f (u) = ∅. If
f (v) = {1} or {1, 2}, then the extension g1 of f on Fi, such that g1 (x) = f (x) for all
x ∈ V (Fi+1), g1 (u2) = g1 (u4) = ∅, g1 (u1) = {1} and g1 (u3) = {2}, is a 2RDF on
Fi. If f (v) = {2}, then the function g2, such that g2 (x) = f (x) for all x ∈ V (Fi+1),
g2 (u2) = g2 (u4) = ∅, g2 (u1) = {2} and g2 (u3) = {1}, is a 2RDF on Fi. So in all
cases there is a 2RDF g on Fi with γ2r(Fi) ≤ w (g) = γ2r(Fi+1) + 2.

Next, let f be a γ2r-function on Fi. If f (u) = f (v) = ∅, or f (u) 6= ∅ and
f (v) 6= ∅, then, by the same argument above, γ2r(Fi) ≥ γr2(Fi+1) + 2. Now, without
loss of generality, suppose that f (v) 6= ∅ and f (u) = ∅. If f (v) = {1} or {2}, then
there exists a γ2r-function on Fi such that f(u2) = f(u4) = ∅ and (f(u1), f (u3)) =
({1} , {2}) or ({2} , {1}), respectively. Finally, If f (v) = {1, 2}, then there exists
a γ2r-function on Fi such that

∑4
j=1 |f(uj)| = 2. So in all cases the restriction of

f on Fi+1, is a 2RDF on Fi+1 with γ2r(Fi+1) ≤ w
(
f|Fi+1

)
= γ2r(Fi) − 2. Hence,

γ2r(Fi+1) = γ2r(Fi)− 2.

Now we are ready to present the exact value ci+e
2r (Cn). Recall that ci+e

2r (e) =
γ2r(Cn)− γ2r(Cn + e) and ci+e

2r (e) ∈ {0, 1} for every e ∈ E(G).

Theorem 5.3. For a cycle Cn with n ≥ 3,

ci+e
2r (Cn) =

{
0 for n ≡ 0, 1, 3 (mod 4),
(n− 2)/4(n− 3) for n ≡ 2 (mod 4).

Proof. Let F (n1, n2), where n1, n2 ∈ {3, 4, 5, 6}, be the graph obtained from the cycle
Cn1+n2−2 by adding a chord such that F (n1, n2) is formed from two cycles Cn1 and Cn2 .
The graph F (n1, n2) will be called an elementary bicyclic graph.
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By applying Procedure 5.1 on a Cn + e, where e ∈ E
(
Cn

)
on the resulting graphs

as much as possible, at the end we obtain an elementary bicyclic graph F (n1, n2) of
order n1 + n2 − 2.

Let k1 and k2 denote the number of groups of four vertices that were removed
from Cn + e to obtain the cycles Cn1 , Cn2 , respectively, of the elementary bicyclic
graph F = F (n1, n2). Thus

k1 + k2 = (n− n(F )) /4. (5.1)

The number of nonnegative integer solutions of Equation (5.1) equals to

{1
(n−n(F ))/4+1 = (n− n(F ) + 4)/4.

By the symmetry of the vertices of Cn and since every edge is computed two times
for n1 = n2, the number of graphs Cn + e corresponding to the elementary bicyclic
graph F equals to {

n
2 (n− n(G) + 4)/4 if n1 = n2,

n(n− n(G) + 4)/4 if n1 6= n2.

By Observation 2.4 and Lemma 5.2, we have that

ci+e
2r (e) = γ2r(Cn)− γ2r(Cn + e) = γ2r(Cn1+n2−2)− γ2r(F )

for some e ∈ E
(
Cn

)
.

Let Fi, for i = 0, 1, be the set of all elementary bicyclic graphs F = F (n1, n2) for
which ci+e

2r (e) = i and set F = F0 ∪ F1. Therefore,

ci+e
2r (Cn) =

(∑
e∈E(Cn)

ci+e
2r (e)

)
/m
(
Cn

)
=
(∑

F∈F1
(# of graphs Cn + e corresponding to F )

)
/m
(
Cn

)
=
(∑

F∈F1
n(n− n(F ) + 4)/8

)
/m
(
Cn

)
.

Note that m
(
Cn

)
= n(n− 3)/2, so

ci+e
2r (Cn) =

(∑
F∈F1

(n− n(F ) + 4)/4(n− 3)
)
. (5.2)

Then by applying Procedure 5.1, we consider four cases with respect to n.
Case 1. n ≡ 0 (mod 4). We have n(F ) ≡ 0 (mod 4). Note that n(F ) = n1 + n2 − 2 = 4
or 8 for each F ∈ F . So,

F = {F (3, 3), F (4, 6), F (5, 5)} .

It is a routine matter to check that F1 = ∅ and F0 = F . So, by Equation (5.2),
we have ci+e

2r (Cn) = 0.
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Case 2. n ≡ 1 (mod 4). We have n(F ) ≡ 1 (mod 4). Note that n(F ) = n1 + n2 − 2 = 5
or 9 for each F ∈ F . So,

F = {F (3, 4), F (5, 6)} .
We can easily check that F1 = ∅ and F0 = F . So, by Equation (5.2), we have
ci+e

2r (Cn) = 0.
Case 3. n ≡ 2 (mod 4). We have n(F ) ≡ 2 (mod 4). Note that n(F ) = n1 + n2 − 2 = 6
or 10 for each F ∈ F . So,

F = {F (3, 5), F (4, 4), F (6, 6)} .

It is easy to see that F1 = {F (4, 4)} and F0 = {F (3, 5), F (6, 6)}. So, by Equation
(5.2), we have

ci+e
2r (Cn) = (n− n(F (4, 4)) + 4)/4(n− 3) = (n− 6 + 4)/4(n− 3) = (n− 2)/4(n− 3).

Case 4. n ≡ 3 (mod 4). We have n(F ) ≡ 3 (mod 4). Note that n(F ) = n1 + n2 − 2 = 7
for each F ∈ F . So,

F = {F (3, 6), F (4, 5)} .
Again it is easy to see that F1 = ∅ and F0 = F . So, by Equation (5.2), we have
ci+e

2r (Cn) = 0, and the proof is complete.

6. THE EDGE ADDITION CRITICALITY INDEX
OF A 2-RAINBOW DOMINATION OF A PATH

In this section we give exact values of the edge addition criticality index of a 2-rainbow
domination of a path Pn.

We first give a lemma that is fundamental in determining the value ci+e
2r (Pn).

Lemma 6.1. Let G = Pn + uv be a graph obtained from a path Pn of order n ≥ 3 by
adding a chord (u, v) forming two paths Pp, Pq and a cycle Ct, where n = p+ q + t.
Then γ2r(Pn + uv) = γ2r(Pn)− 1 if and only if either

1. n = 4 and uv ∈ E
(
P4
)
, or

2. n 6= 4 and uv ∈ E = {e ∈ E
(
Pn

)
| n ≡ 0 (mod 2), pq = 0 and t ≡ 0(mod 4)}.

Proof. If n = 4, then it is easy to see that G = K1,3 + e or G = C4, and so
γ2r(G) = γ2r(P4)−1 for all edge uv of E

(
P4
)
. Now assume that n ≥ 3 and n 6= 4. If G

is a cycle, then p = q = 0 and t = n. By Proposition 2.2, uv /∈ E and γ2r(G) = γ2r(Pn)
for n ≡ 1, 2, 3 (mod 4), and uv ∈ E and γ2r(G) = γ2r(Pn)− 1 for n ≡ 0 (mod 4). Now
we suppose that G is not a cycle, then G is obtained from the graph G′ = Cn + uv by
removing an edge e 6= uv. In this case p 6= 0 or q 6= 0. We suppose, without loss of
generality, that p 6= 0. Let f be a γ2r-function on G. We consider two cases:
Case 1. n ≡ 1 (mod 2). Then uv /∈ E , and by Proposition 2.1 (ii), we have
γ2r(G) ≥ γ2r(G′), and so from Theorem 5.3 and Proposition 2.2, we obtain that
γ2r(G) ≥ γ2r(G′) = γ2r(Cn) = γ2r(Pn). Since γ2r(G) ≤ γ2r(Pn) (see Proposition 2.1
(iii)), we deduce that γ2r(G) = γ2r(Pn).
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Case 2. n ≡ 0 (mod 2). We have to examine three possibilities:
Subcase 2.1. q 6= 0. Then uv /∈ E . If f(u) = f(v) = ∅, or f(u) 6= ∅ and f(v) 6= ∅, then
γ2r(Pn) ≤ γ2r(G) and by Proposition 2.1 (iii), γ2r(G) = γ2r(Pn). Now we suppose,
without loss of generality, that f(u) 6= ∅ and f(v) = ∅. Let Pp+t−1 be the subpath
of G defined by the vertices V (Pp) ∪ (V (Ct)− {v}). It is clear that the restriction of
f on V (Pp+t−1) is a 2RDF on Pp+t−1 and the restriction of f on V (Pq) is a 2RDF
on Pq. Thus, by Proposition 2.3,

γ2r(G) = w(f|Pp+t−1) + w
(
f|Pq

)
≥ γ2r(Pp+t−1) + γ2r(Pq)

= d(p+ t) /2e+ d(q + 1) /2e ≥ (p+ t) /2 + (q + 1) /2 = (n+ 1) /2.

Hence γ2r(G) ≥ d(n+ 1) /2e = γ2r(Pn), and so γ2r(G) = γ2r(Pn).
Subcase 2.2. q = 0 and t ≡ 1, 2, 3 (mod 4). Then uv /∈ E . If f(u) = f(v) = ∅, or
f(u) 6= ∅ and f(v) 6= ∅, then similarly to Subcase 2.1, we have γ2r(G) = γ2r(Pn). Now
we suppose that f(u) = ∅ and f(v) 6= ∅, or f(u) 6= ∅ and f(v) = ∅.

If f(u) = ∅ and f(v) 6= ∅, then the restriction of f on V (Pp) is a 2RDF on Pp and
the restriction of f on V (Ct)− {u} is a 2RDF on Pt−1. Thus, by Proposition 2.3,

γ2r(G) = w
(
f|Pp

)
+ w

(
f|Pt−1

)
≥ γ2r(Pp) + γ2r(Pt−1)

= d(p+ 1) /2e+ dt/2e ≥ (p+ 1) /2 + t/2 = (n+ 1) /2.

Hence, γ2r(G) ≥ d(n+ 1) /2e = γ2r(Pn) and so γ2r(G) = γ2r(Pn).
If f(u) 6= ∅, f(v) = ∅ and p ≥ 2, then there is a γ2r-function on G such that

f (x) = ∅, where x ∈ N (u) ∩ V (Pp), and so the restriction of f on V (Pp) − {x} is
a 2RDF on the subpath Pp−1 and the restriction of f on V (Ct) is a 2RDF on Ct.
Thus, by Propositions 2.3 and 2.2,

γ2r(G) = w(f|Pp−1) + w
(
f|Ct

)
≥ γ2r(Pp−1) + γ2r(Ct)

= dp/2e+ d(t+ 1) /2e ≥ p/2 + (t+ 1) /2 = (n+ 1) /2.

Hence, γ2r(G) ≥ d(n+ 1) /2e = γ2r(Pn) and so γ2r(G) = γ2r(Pn).
If f(u) 6= ∅, f(v) = ∅ and p = 1, then t ≡ 1, 3 (mod 4) and t 6= 3, since n ≡ 0

(mod 2) and n 6= 4. Let x, v ∈ N (u) ∩ V (Ct) and z be the unique leaf in G. We have
to examine possibilities for f depending on whether |f(u)| = 2 or |f(u)| = 1.

If |f(u)| = 2, then there exists a γ2r-function on G such that the restriction of f
on {u, z} is a 2RDF on the subpath P2, the restriction of f on V (Ct − {x, v, u}) is
a 2RDF on the subpath Pt−3 and f(x) = ∅. Thus, by Proposition 2.3,

γ2r(G) = w
(
f|P2

)
+ w

(
f|Pt−3

)
≥ γ2r(P2) + γ2r(Pt−3)

= 2 + d(t− 2) /2e = 1 + (t+ 1) /2 = n/2 + 1.

Hence, γ2r(G) ≥ n/2 + 1 = γ2r(Pn) and so γ2r(G) = γ2r(Pn).
If |f(u)| = 1, then the restriction of f on V (Ct) is a 2RDF on Ct and |f (z)| = 1.

Thus, by Propositions 2.3 and 2.2,

γ2r(G) = |f (z)|+ w
(
f|Ct

)
≥ 1 + γ2r(Ct)

= 1 + d(t+ 1) /2e = 1 + (t+ 1) /2 = n/2 + 1.
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Hence, γ2r(G) ≥ n/2 + 1 = γ2r(Pn) and so γ2r(G) = γ2r(Pn).
Subcase 2.3. q = 0 and t ≡ 0 (mod 4). Then p ≡ 0 (mod 2) and so uv ∈ E . Since Ct is
vertex transitive, there exists a γ2r-function h1 on Ct, with h1 (u) = {1}. And there
exists a γ2r-function h2 on the subpath of G defined by the vertices V (Pp)∪ {u}, with
h2 (u) = {1}. Let h be a function on G defined as follows,

h(x) =
{
h1(u) if x ∈ V (Ct),
h2(x) if x ∈ V (Pp).

It is easy to see that h is a 2RDF on G. Thus, by Propositions 2.3 and 2.2,

γ2r(G) ≤ w (h) = w (h1) + w (h2)− 1 = γ2r(Ct) + γ2r(Pp+1)− 1
= t/2 + b(p+ 1) /2c+ 1− 1 = t/2 + p/2 = n/2.

Hence, γ2r(G) ≤ γ2r(Pn)−1, and so by Proposition 2.1 (iii), γ2r(G) = γ2r(Pn)− 1.

Now we are ready to present the exact value ci+e
2r (Pn). Recall that ci+e

2r (e) =
γ2r(Pn)− γ2r(Pn + e) and ci+e

2r (e) ∈ {0, 1} for every e ∈ E(G).
Theorem 6.2. For a path Pn,

ci+e
2r (Pn) =


1/(n− 1) for n ≥ 5 and n ≡ 0 (mod 2),
0 for n ≥ 3 and n ≡ 1 (mod 2),
1 for n = 4.

Proof. If n = 4, then G = K1,3 + e or C4, and it is easy to see that ci+e
2r (e) = 1 for all

edge e of E
(
P4
)
. Hence ci+e

2r (Pn) = 1.
Now assume that n ≥ 3 and n 6= 4. Two cases are distinguished with respect to

the parity of n.
Case 1. n ≡ 1 (mod 2). Then e /∈ E for all edge e of E

(
Pn

)
, and from Lemma 6.1,

ci+e
2r (e) = 0 which implies that ci+e

2r (Pn) = 0.
Case 2. n ≡ 0 (mod 2). Then by Lemma 6.1, ci+e

2r (e) = 1 for e ∈ E , and ci+e
2r (e) = 0

for e ∈ E
(
Pn

)
− E . So

ci+e
2r (Pn) =

(∑
e∈E(Pn)

ci+e
2r (e)

)
/m
(
Pn

)
=
(∑

e∈E
(# of graphs Pn + e corresponding to e)

)
/m
(
Pn

)
.

= |E| /m
(
Pn

)
.

Therefore,
ci+e

2r (Pn) = |E| /m
(
Pn

)
. (6.1)

Note that m
(
Pn

)
= (n− 1)(n− 2)/2, and the number of edges of E is

|E| =
{

2(n/4)− 1 for n ≡ 0 (mod 4),
2 (n− 2) /4 for n ≡ 2 (mod 4)

= n/2− 1.
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Hence, by Equation (6.1), we obtain that

ci+e
2r (Pn) = 2(n/2− 1)/(n− 1)(n− 2) = 1/(n− 1),

and the proof is complete.
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