PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Boundary Harnack inequality for α-harmonic functions on the Sierpiński triangle

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove a uniform boundary Harnack inequality for nonnegative functions harmonic with respect to α-stable process on the Sierpiński triangle, where α ∈ (0,1). Our result requires no regularity assumptions on the domain of harmonicity.
Rocznik
Strony
353--368
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] M. T. Barlow, Diffusions on fractals, in: Lectures on Probability Theory and Statistics (Saint-Flour, 1995), Lecture Notes in Math. No 1690, Springer, 1998, pp. 1-121.
  • [2] M. T. Barlow and R. F. Bass, The construction of Brownian motion on the Sierpiński carpet, Ann. Inst. H. Poincaré 25 (1989), pp. 225-257.
  • [3] M. T. Barlow, R. F. Bass, T. Kumagai and A. Teplyaev, Uniqueness of Brownian motion on Sierpiński carpets, J. Eur. Math. Soc., to appear.
  • [4] M. T. Barlow, A. Grigor’yan and T. Kumagai, Heat kernel upper bounds for jump processes and the first exit time, J. Reine Angew. Math., to appear.
  • [5] M. T. Barlow and A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (1988), pp. 543-623.
  • [6] J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge 1996.
  • [7] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Pure Appl. Math., Academic Press, New York 1968.
  • [8] K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997), pp. 43-80.
  • [9] K. Bogdan, T. Kulczycki and M. Kwa ´snicki, Estimates and structure of α-harmonic functions, Probab. Theory Related Fields 140 (3-4) (2008), pp. 345-381.
  • [10] K. Bogdan, A. Stós and P. Sztonyk, Harnack inequality for stable processes on d-sets, Studia Math. 158 (2) (2003), pp. 163-198.
  • [11] Z. Q. Chen and T. Kumagai, Heat kernel estimates for stable-like processes on d-sets, Stochastic Process. Appl. 108 (1) (2003), pp. 27-62.
  • [12] K. Darlymple, R. Strichartz and J. P. Vinson, Fractal differential equations on the Sierpiński gasket, J. Fourier Anal. Appl. 5 (1999), pp. 203-284.
  • [13] G. Doetsch, Introduction to the Theory and Applications of the Laplace Transformation, Springer, Berlin-Heidelberg-New York 1974.
  • [14] E. B. Dynkin, Markov Processes, Vols. I and II, Springer, Berlin-Götingen-Heidelberg 1965.
  • [15] M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal. 1 (1992), pp. 1-35.
  • [16] S. Goldstein, Random walks and diffusions on fractals, in: Percolation Theory and Ergodic Theory of Infinite Particle Systems, IMA Vol. Math. Appl. 8, Springer, 1987, pp. 121-128.
  • [17] B. M. Hambly, T. Kumagai, S. Kusuoka and X. Y. Zhou, Transition density estimates for diffusion processes on homogeneous random Sierpiński carpets, J. Math. Soc. Japan 52 (2) (2000), pp. 373-408.
  • [18] J. Kigami, Analysis on Fractals, Cambridge Tracts in Math. 143 (2001).
  • [19] T. Kumagai, Brownian motion penetrating fractals - An application of the trace theorem of Besov spaces, J. Funct. Anal. 170 (1) (2000), pp. 69-92.
  • [20] T. Kumagai, Some remarks for stable-like processes on fractals, in: Fractals in Graz 2001, Trends Math., Birkhäuser, 2002, pp. 185-196.
  • [21] T. Kumagai, Function spaces and stochastic processes on fractals, in: Fractal Geometry and Stochastics III, C. Bandt, U. Mosco and M. Zähle (Eds.), Progr. Probab. 57, Birkhäuser, 2004, pp. 221-234.
  • [22] T. Kumagai and K. T. Sturm, Construction of diffusion processes on fractals, d-sets, and general metric measure spaces, J. Math. Kyoto Univ. 45 (2) (2005), pp. 307-327.
  • [23] S. Kusuoka, A diffusion process on a fractal, in: Probabilistic Methods in Mathematical Physics: Proceedings of the Taniguchi International Symposium, Katata 1985, Kino Kuniya-North Holland, Amsterdam 1987, pp. 251-274.
  • [24] K. Pietruska-Pałuba, On function spaces related to the fractional diffusions on d-sets, Stoch. Stoch. Rep. 70 (2000), pp. 153-164.
  • [25] L. G. Rogers, R. S. Strichartz and A. Teplyaev, Smooth bumps, a Borel theorem and paritions of smooth functions on P.C.F. fractals, Trans. Amer. Math. Soc. 361 (2009), pp. 1765-1790.
  • [26] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge 1999.
  • [27] R. Song and J. M. Wu, Boundary Harnack principle for symmetric stable processes, J. Funct. Anal. 168 (1999), pp. 403-427.
  • [28] A. Stós, Symmetric stable processes on d-sets, Bull. Pol. Acad. Sci. Math. 48 (2000), pp. 237-245.
  • [29] A. Stós, Boundary Harnack principle for fractional powers of Laplacian on the Sierpiński carpet, Bull. Pol. Acad. Sci. Math. 130 (7) (2006), pp. 580-594.
  • [30] R. S. Strichartz, Analysis on fractals, Notices Amer. Math. Soc. 46 (1999), pp. 1199-1208.
  • [31] R. S. Strichartz, Differential Equations on Fractals, Princeton University Press, Princeton 2006.
  • [32] R. S. Strichartz and M. Uscher, Splines on fractals, Math. Proc. Cambridge Philos. Soc. 129 (2) (2000), pp. 331-360.
  • [33] A. Teplyaev, Spectral analysis on infinite Sierpiński gaskets, J. Funct. Anal. 159 (1998), pp. 537-567.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ead79129-15e1-42f1-adeb-3ca8e6b99f64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.