PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modular heat storage in waste heat recovery installations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the methodology of designing a system for accumulating waste heat from industrial processes. The research aimed to analyse the fluid’s movement in the heat accumulator to unify the temperature field in the volume of water constituting the heat buffer. Using the computer program Ansys Fluent, a series of computational fluid dynamics simulations of the process of charging the heat storage with water at 60◦C, 70◦C, and 80◦C was carried out. The selected temperatures correspond to the temperature range of unmanaged waste heat. In the presented solution, heat storage is loaded with water from the cooling systems of industrial equipment to store excess heat and use it at a later time. The results of numerical calculations were used to analyse the velocity and temperature fields in the selected structure of the modular heat storage. A novelty in the presented solution is the use of smaller modular heat storage units that allow any configuration of the heat storage system. This solution makes it possible to create heat storage with the required heat capacity.
Słowa kluczowe
Rocznik
Strony
301--323
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • AGH University of Krakow, Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Krakow, Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Krakow, Mickiewicza 30, 30-059 Kraków, Poland
  • Cracow University of Technology, Jana Pawła II 37, 31-864 Kraków, Poland
Bibliografia
  • [1] Saini M.C., Jakhar D.O.: CFD simulation and experimental validation of PCM thermal energy storage system for micro trigeneration system application. Int. J. Refrig.149(2023), 119–134. doi: 10.1016/j.ijrefrig.2022.12.004
  • [2] Fernández-Yáñez P., Romero V., Armas O., Cerretti G.: Thermal management of thermoelectric generators for waste energy recovery. Appl. Therm. Eng. 196(2021),117291. doi: 10.1016/j.applthermaleng.2021.117291
  • [3] Chu S., Sethuvenkatraman S., Goldsworthy M., Yuan G.: Techno-economic assessment of solar assisted precinct level heating systems with seasonal heat storage for Australian cities. Renew. Energ. 201(2022), 841–853. doi: 10.1016/j.renene.2022.11.011
  • [4] Tohidi F., Ghazanfari Holagh S., Chitsaz, A.: Thermoelectric generators: A comprehensive review of characteristics and applications. Appl. Therm. Eng. 201(2021),117793. doi: 10.1016/j.applthermaleng.2021.117793
  • [5] Wang C., Wang S., Cheng X., Zhang Y., Wang, Z.: Research progress and performance improvement of phase change heat accumulators. J. Energ. Stor. 56(2022),105884. doi: 10.1016/j.est.2022.105884
  • [6] Dai B., Liu C., Liu S., Wang D., Wang Q., Zou T., Zhou X.: Life cycle technoenviro-economic assessment of dual-temperature evaporation transcritical CO2 hightemperature heat pump systems for industrial waste heat recovery. Appl. Therm. Eng. 219(2023), 119570. doi: 10.1016/j.applthermaleng.2022.119570
  • [7] Dmitry S., Liubov S.: Numerical modelling of heat accumulator performance at storage of solar energy. Int. J. Thermofluids 17(2023), 100268. doi: 10.1016/j.ijft.2022.100268
  • [8] Ouyang T., Qin P., Tan X., Wang J., Fan J.: A novel peak shaving framework for coalfired power plant in isolated microgrids: Combined flexible energy storage and waste heat recovery. J. Clean. Prod. 374(2022), 133936. doi: 10.1016/j.jclepro.2022.133936
  • [9] Fan M., Wang J., Kong X., Suo H., Zheng W., Li H.: Experimental evaluation of the cascaded energy storage radiator for constructing indoor thermal environment in winter. Appl. Energ. 332(2023), 120503. doi: 10.1016/j.apenergy.2022.120503
  • [10] Haillot D., Lalau Y., Franquet E., Rigal S., Jay F., Bédécarrats J.P.: A latent heat storage system for low-temperature applications: From materials selection to prototype performances. Appl. Sci. 11(2021), 10350. doi: 10.3390/app112110350
  • [11] Bouhal T., ed. Dîn Fertahi S., Agrouaz Y., El Rhafiki T., Zeraouli Y., Jamil A.: Towards an energy efficiency optimization of solar horizontal storage tanks and circulation pipes integrating evacuated tube collectors through CFD parametric studies. Sustain. Energy Technol. Assess. 26(2018), 93–104. doi: 10.1016/j.seta.2017.10.004
  • [12] Heat accumulator – a way to reduce home heating costs (in Polish). https://mu ratordom.pl/instalacje/ogrzewanie-paliwami-stalymi/akumulator-ciepla-sposobna-obnizenie-kosztow-ogrzewania-domu-aa-EdFw-ydbp-5P5q.html (accessed 3 Feb.2023).
  • [13] Agrouaz Y., Bouhal T., Allouhi A., Kousksou T., Jamil A., Zeraouli Y.: Energy and parametric analysis of solar absorption cooling systems in various Moroccan climates. Case Stud. Therm. Eng. 9(2017), 28–39. doi: 10.1016/j.csite.2016.11.002
  • [14] Rosen M.A., Tang R., Dincer I.: Effect of stratification on energy and exergy capacities in thermal storage systems. Int. J. Energy Res. 28(2004), 177–193. doi:10.1002/er.960
  • [15] Zhang C., Chai D., Pan X., Xie J., Chen J.: Performance Analysis of Two Systems Combining Heat Pump and Water Vapor Compression for Waste Heat Recovery. Appl. Sci. 12(2022), 12853. doi: 10.3390/app122412853
  • [16] Heat Storage – Types of Storage (in Polish). https://www.cire.pl/artykuly/materialy-problemowe/119630-magazynowanie-ciepla-rodzaje-magazynow (accessed 3 Feb. 2023).
  • [17] Portarapillo M., Danzi E., Sanchirico R., Marmo L., Di Benedetto A.: Energy recovery from vinery waste: Dust explosion issues. Appl. Sci. 11(2021). doi: 10.3390/app112311188
  • [18] Ugur B.: Thermal Energy Storage in Adsorbent Beds. PhD thesis, Univ. of Ottawa, 2013.
  • [19] Shigeishi R.A., Langford C.H., Hollebone B.R.: Solar energy storage using chemical potential changes associated with drying of zeolites. Sol. Energy 23(1979), 489–495.doi: 10.1016/0038-092X(79)90072-0
  • [20] Badyda K., Bujalski W., Niewiński G., Warchoł M.: Selected issues related to heat storage tank modelling and optimisation aimed at forecasting its operation. Arch. Thermodyn. 32(2011), 3, 3–31. doi: 10.2478/v10173-011-0010-8
  • [21] Ziębik A., Gładysz P.: Optimal coefficient of the share of cogeneration in the district heating system cooperating with thermal storage. Arch. Thermodyn, 32(2011), 3,71–87. doi: 10.2478/v10173-011-0014-4
  • [22] Zhu C., Zhang J., Wang Y., Deng Z., Shi P., Wu J., Wu Z.: Study on thermal performance of single-tank thermal energy storage system with thermocline in solar thermal utilization. Appl. Sci. 12(2022), 3908. doi: 10.3390/app12083908
  • [23] Szajding A., Kuta M., Cebo-Rudnicka A., Rywotycki M.: Analysis of work of a thermal energy storage with a phase change material (PCM) charged with electric heaters from a photovoltaic installation. Int. Commun. 140(2023), 106547. doi:10.1016/j.icheatmasstransfer.2022.106547
  • [24] Kącki E.: Partial Differential Equations in Physics and Engineering. WNT, Warsaw1992 (in Polish).
  • [25] Malczewski J.: Models of Mass, Momentum and Energy Transport Processes. PWN, Warsaw 1992 (in Polish).
  • [26] Prywer J., Zarzycki R., Orzechowski Z.: Fluid Mechanics in Environmental Engineering. WNT, Warsaw 2001 (in Polish).
  • [27] ANSYS Manual. ANSYS Inc. Canonsburg 2022.
  • [28] Regulski W.: Computer modeling of turbulent flows. https://www.meil.pw.edu.pl/za/content/download/18385/99605/file/Lab_67.pdf (accessed 3 Feb. 2023)
  • [29] K-Epsilon. https://www.simscale.com/docs/simulation-setup/global-settings/k-epsilon/ (accessed 3 Feb. 2023).
  • [30] Paszko M., Łygas K.: Modern methods of modeling turbulent flows in the environment of a moving city bus. http://yadda.icm.edu.pl/baztech/element/bwmeta1. element.baztech-86cf1eb6-09ab-40e4-b9a9-9f5fb64c9e0f (accessed 3 Feb. 2023).
  • [31] ANSYS Fluent Manual. ANSYS Inc. Canonsburg 2022.
  • [32] ANSYS Mesh Methods Explained. https://featips.com/2022/12/27/ansys-meshmethods-explained/ (accessed 3 Feb. 2023).
  • [33] How to Verify Mesh Quality in ANSYS Workbench. https://featips.com/2021/05/07/how-to-verify-mesh-quality-in-ansys-workbench/ (accessed 3 Feb. 2023).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eaca2e2e-e57f-4a7a-bb89-4c1f9e67bdb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.