PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical and Experimental Analysis of Cryptographic Hash Functions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a theoretical introduction to the cryptographic hash function theory and a statistical experimental analysis of selected hash functions. The definition of hash functions, differences between them, their strengths and weaknesses are explained as well. Different hash function types, classes and parameters are described. The features of hash functions are analyzed by performing statistical analysis. Experimental analysis is performed for three certified hash functions: SHA1-160, SHA2-512 and SHA3-512. Such an analysis helps understand the behavior of cryptographic hash functions and may be very helpful for comparing the security level of the hashing method selected. The tests may serve as a basis for examination of each newly proposed hash function. Additionally, the analysis may be harness as a method for comparing future proposals with the existing functions.
Rocznik
Tom
Strony
125--133
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
  • Cracow University of Technology, 24 Warszawska St, 31-155 Kraków, Poland
Bibliografia
  • [1] I. Gomaa, „Global information assurance certification paper", SANS Institute, May 2011.
  • [2] R. Sobti and G. Ganesan, „Cryptographic hash functions: A review", Int. J. of Com. Sci. Issues, vol. 9, no. 2, pp. 461-479, 2012.
  • [3] J. L. Carter and Mark N. Wegman, „Universal classes of hash functions", J. of Comp. and Syst. Sciences, vol. 18, no. 2, pp. 143-154, 1979 (doi:10.1016/0022-0000(79)90044-8).
  • [4] R. C. Merkle, „Secrecy, authentication, and public key systems", Ph.D. Thesis, Department of Electrical Engineering, Stanford University, CA, USA, 1979 [Online]. Available: http://www.merkle.com/papers/Thesis1979.pdf
  • [5] M. Naor and M. Yung, „Universal one-way hash functions and their cryptographic applications", March 1995 [Online]. Available: http://www.wisdom.weizmann.ac.il/_naor/PAPERS/uowhf.pdf
  • [6] B. Preneel, „Cryptographic hash functions: An overview", in Proc. of the 6th Int. Comp. Secur. and Virus Conf. ICSVC 1993, Lueven, Belgium, 1993 [Online]. Available: https://www.esat.kuleuven.be/cosic/publications/article-289.pdf
  • [7] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk, „Cryptographic hash functions: A survey", Tech. Rep. 95-09, vol. 4, Department of Computer Science, University of Wollongong, 1995.
  • [8] S. Matyas, C. Meyer, and J. Oseas, „Generating strong one-way functions with cryptographic algorithm", IBM Techn. Disclosure Bull., vol. 27, no. 10A, 1985.
  • [9] S. Wolfram, „Random sequence generation by cellular automata", Adv. in Appl. Mathem., vol. 7, no. 2, pp. 123-169, 1986 (doi: 10.1016/0196-8858(86)90028-X).
  • [10] J. Daemen, R. Govaerts, and J. Vandewalle, „A framework for the design of one-way hash functions including cryptanalysis of damgård's one-way function based on a cellular automaton", in Ad- vances in Cryptology ASIACRYPT 91, H. Imai, R. L. Rivest, and T. Matsumoto, Eds. LNCS, vol. 739, pp. 82-96. Berlin Heidelberg: Springer, 1993 (doi: 10.1007/3-540-57332-1 7).
  • [11] B. Preneel, „The first 30 years of cryptographic hash functions and the nist SHA-3 competition", in Topics in Cryptology - CT-RSA 2010. The Cryptographers' Track at the RSA Conference 2010, San Francisco, CA, USA, March 1-5, 2010. Proceedings, J. Pieprzyk, Ed. LNCS, vol. 5985, pp. 1-14. Berlin, Heidelberg, 2010 (doi: 10.1007/978-3-642-11925-5 1).
  • [12] S. Harari, „Non linear non commutative functions for data integrity", in Advances in Cryptology, T. Beth, N. Cot, and I. Ingemarsson, Eds. LNCS, vol. 209, pp. 25-32. Berlin Heidelberg: Springer, 1985 (doi: 10.1007/3-540-39757-4 4).
  • [13] M. S. Turan et al., „NISTIR 7764: Status report on the second round of the sha-3 cryptographic hash algorithm competition", Tech. Rep., NIST, 2011 (doi: 10.6028/NIST.IR.7764).
  • [14] „Announcing request for candidate algorithm nominations for a new cryptographic hash algorithm (SHA-3) family", Tech. Rep., NIST, 2007.
  • [15] S. J. Chang et al., „NISTIR 7896: Third-round report of the SHA-3 cryptographic hash algorithm competition", Tech. Rep., NIST, 2012 (doi: 10.6028/NIST.IR.7896).
  • [16] Fips pub 202: M. J. Dworkin, „SHA-3 standard: Permutation-based hash and extendable-output functions", Tech. Rep. no. 202, NIST, 2015 (doi: 10.6028/NIST.FIPS.202).
  • [17] A. K. Lenstra, „Key lengths. Contribution to the handbook of information security", 2004 [Online]. Available: http://plan9.bell-labs.co/who/akl/key lengths.pdf
  • [18] Bouncy Castle library [Online]. Available: https://www.bouncycastle.org (accessed: 08.2018).
  • [19] Class SecureRandom [Online]. Available: https://docs.oracle.com/ javase/7/docs/api/java/security/SecureRandom.html (accessed: 08.2018).
  • [20] „Hamming Distance and Error Correcting Codes", Hamming Distance [Online]. Available: http://www.oxfordmathcenter.com/ drupal7/node/525 (accessed: 08.2018).
  • [21] Wald-Wolfowitz series test [Online]. Available: https://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm (accessed: 08.2018).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eac87ce4-41a9-4e24-b6df-1552bb82b97a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.