PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement of the mechanical properties of mobile platform stainless construction elements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stainless steel could be treated as the main material used to construct various means of transport, including mobile platforms and tank trucks. An austenitic steel known as 316L steel (1.4401) has high resistance to atmospheric corrosion, natural waters, water vapor, alkaline solutions, and acids, even at elevated temperatures. This steel is weldable, although it is also prone to various types of welding cracks. Many factors influence the quality and mechanical properties of a joint. The most significant of these is the appropriate selection of welding parameters, which should be determined precisely and separately for each type of sheet, depending on its thickness and geometric features. The aim of the present article is to study the influence of main TIG (Tungsten inert gas) welding parameters on the creation of proper joints used in the construction of mobile truck platforms or tank trucks. The proper selection of parameters enables the production of welds with good functional properties. A novelty of this article is the proposal to weld each layer of a thick joint with different parameters, which has an important influence on the mechanical properties of the joint. It is expected that the new material and technological solution will yield a joint with good corrosion resistance and increased mechanical properties. This is important in the responsible construction of means of transport, using the example of mobile platforms and tank trucks. Different tests verifying the properties of joints, including non-destructive testing, tensile strength tests, and fatigue tests, as well as a hardness probe, were applied.
Czasopismo
Rocznik
Strony
91--102
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Silesian University of Technology; 8 Krasińskiego, 40-019 Katowice, Poland
  • Silesian University of Technology; 8 Krasińskiego, 40-019 Katowice, Poland
Bibliografia
  • 1. Niedzielska, M. & Chmielewski, T. HVOF spraying process conditions of coating Cr3C2-NiCr deposited onto 316L steel. Welding Technology Review. 2017. Vol. 89. No. 3. P. 46-50.
  • 2. Frazier, W.E. & Polakovics, D. & Koegel W. Qualifying of Metallic Materials and Structures for Aerospace Applications. JOM. 2001. Vol. 53. P. 16-18.
  • 3. Stal nierdzewna w przemyśle samochodowym. Available at: http://www.stalenierdzewne.pl/662/stal-nierdzewna-w-przemysle-samochodowym. [In Polish: Stainless steel in the automotive industry]
  • 4. Folkhard, E. Welding Metallurgy of Austenitic Stainless Steels. In: Welding Metallurgy of Stainless Steels. Springer. Vienna. 1988. DOI: https://doi.org/10.1007/978-3-7091-8965-8_9.
  • 5. Euro-Inox. Guidelines of the Welded fabrication of Stainless steels. 2007.
  • 6. Sowards, J. & Caron, J. Weldability of Nickel-Base Alloys. In: Saleem Hashmi (ed.) Comprehensive Materials Processing. Elsevier. 2014. Vol. 6. P. 151-179.
  • 7. Herderick, E. Additive manufacturing of metals. A review. In Mater Sci Technol Conf. exhib. 34 2011, MS&T’11. 2011. Vol. 2. P. 1413-1425.
  • 8. Benson, T.H. & Shoeppner, G.A. Accelerating Materials Insertion by Evolving DoD Materials Qualification-Transition Paradigm. AMMITAC Q. 2002.Vol. 6. No. 1. P. 3-6.
  • 9. Tarasiuk, W. & Golak, K. & Tsybrii, Y. &, Nosko, O. Correlations between the wear of car brake friction materials and airborne wear particle emissions. Wear. 2020. Vols. 456-457. Paper No. 203361.
  • 10. Pałubicki, S. & Karpiński, S. Linear energy impact on formation of hot cracks in the welding process of S 355J2WP by 135 method. Welding Technology Review. 2015. Vol. 87. No. 4. P. 21-27.
  • 11. Ramon, J. & Basu, R. & Voort, G.V. & Bola, G. A comprehensive study on solidification (hot) cracking in austenitic stainless steel welds from a microstructural approach. International Journal of Pressure Vessels and Piping. 2021. Vol. 194. Part B. No. 104560.
  • 12. Celin, R. & Burja, J. Effect of cooling rates on the weld heat affected zone coarse grain microstructure. Metallurgical and Materials Engineering. 2018. Vol. 24. No. 1. P. 37-44.
  • 13. James, M.N. & Matthews, L. & Hattingh, D.G. Weld solidification cracking in a 304L stainless steel water tank. Engineering Failure Analysis. 2020. Vol. 115. Paper No. 104614.
  • 14. Martinetti, A. & Chatzimichailidou, M.M. & Maida, L. & van Dongen, L. Safety I–II, resilience and antifragility engineering: a debate explained through an accident occurring on a mobile elevating work platform. International journal of occupational safety and ergonomics. 2019. Vol. 25. No. 1. P. 66-75.
  • 15. Gao, X. & Sun, D. & Ge, Y. & Yang, X. & Li, J. Dynamic stability analysis and experiment of the mobile elevating work platforms. In: IOP Conference Series: Materials Science and Engineering. 2020. Vol. 772. No. 1. Paper No. 012013.
  • 16. Bošnjak, S.M. & Gnjatović, B.N. & Momčilović, D.B. &. Milenović, I.L.J. & Gašić V.M Failure analysis of the mobile elevating work platform. Case Studies in Engineering. Failure Analysis. 2015. Vol. 3. P. 80-87.
  • 17. Urzynicok, M. & Kwieciński, K. & Szubryf, M. & Slania, J. Application of new GMAW welding methods used in prefabrication of P92. P. 532-541. Available on: https://www.osti.gov/etdeweb/biblio/21588204.
  • 18. Rogalski, G. & Świerczyńska, A. & Landowski, M. & Fydrych, D. Mechanical and microstructural characterization of TIG welded dissimilar joints between 304L austenitic stainless steel and Incoloy 800HT nickel alloy. Metals. 2020. Vol. 10. No. 5. P. 559-570.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eac6e09b-66ac-4928-a786-04e1509feac0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.