PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trans-resveratrol as a health beneficial molecule: activity, sources, and methods of analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Trans-Resveratrol, a natural polyphenol found in various plant species, has gained significant attention due to its potential health-promoting properties. This article reviews the biological activities attributed to trans-Resveratrol, its dietary sources, and the analytical methods employed for its quantification. The compound antioxidant, anti-inflammatory, anticancer, cardioprotective, and neuroprotective activities are discussed in detail. Furthermore, the sources of trans-Resveratrol, including grapes, berries, and certain nuts, are examined in terms of their content variability and factors influencing production. Various chromatographic, spectroscopic, and immunoassay methods for the analysis of trans-Resveratrol in different matrices are also explored. This comprehensive overview underscores the significance of trans-Resveratrol as a potential molecule for enhancing human health and longevity.
Czasopismo
Rocznik
Strony
268--294
Opis fizyczny
Bibliogr. 62 poz., 1 il. kolor., rys.
Twórcy
  • Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
  • Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
  • EA 2106 «Biomolécules et Biotechnologie Végétales», UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France
  • EA 2106 «Biomolécules et Biotechnologie Végétales», UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France
  • Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 45067 Orleans, France
  • EA 2106 «Biomolécules et Biotechnologie Végétales», UFR des Sciences Pharmaceutiques, Université de Tours, 31 av. Monge, F37200 Tours, France
autor
  • Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
  • Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
  • Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 St., 30-688 Cracow, Poland
Bibliografia
  • [1] Bonkowski, M.S.; Sinclair, D.A.; Slowing Ageing by Design: The Rise of NAD+ and Sirtuin-Activating Compounds. Nat. Rev. Mol. Cell Biol. 2016, 17 (11), 679-690. DOI: 10.1038/nrm.2016.93
  • [2] Lambert, C.; Richard, T.; Renouf, E.; Bisson, J.; Waffo-Téguo, P.; Bordenave, L.; Ollat, N.; Mérillon, J.-M.; Cluzet, S.; Comparative Analyses of Stilbenoids in Canes of Major Vitis Vinifera L. Cultivars. J. Agric. Food Chem. 2013, 61 (47), 11392-11399. DOI: 10.1021/jf403716y
  • [3] Billet, K.; Houillé, B.; Dugé de Bernonville, T.; Besseau, S.; Oudin, A.; Courdavault, V.; Delanoue, G.; Guérin, L.; Clastre, M.; Giglioli-Guivarc’h, N.; et al;. Field-Based Metabolomics of Vitis Vinifera L. Stems Provides New Insights for Genotype Discrimination and Polyphenol Metabolism Structuring. Front. Plant. Sci. 2018, 9, 1-15. DOI: 10.3389/fpls.2018.00798
  • [4] Ferriès, J. THE FRENCH PARADOX: LESSONS FOR OTHER COUNTRIES. Heart 2004, 90, 107-111. DOI: 10.1136/heart.90.1.107
  • [5] Abo-Kadoum, M.A.; Abouelela, M.E.; Al Mousa, A.A.; Abo-Dahab, N,F.; Mosa, M.A.; Helmy, Y.A.; Hassane, A.M.A.; Resveratrol Biosynthesis, Optimization, Induction, Bio-Transformation and Bio-Degradation in Mycoendophytes. Front. Microbiol. 2022, 13, 1-20. DOI: 10.3389/fmicb.2022.1010332
  • [6] Li, T.L.; Spiteller, D.; Spencer, J.B.; Identification of a Pentaketide Stilbene Produced by a Type III Polyketide Synthase from Pinus Sylvestris and Characterisation of Free Coenzyme a Intermediates. Chembiochem 2009, 10 (5), 896-901. DOI: 10.1002/cbic.200800840
  • [7] Schröder, G.; Brown, J. W.; Schröder, J.; Molecular Analysis of Resveratrol Synthase. CDNA, Genomic Clones and Relationship with Chalcone Synthase. Eur. J. Biochem. 1988, 172 (1), 161-169. DOI: 10.1111/j.1432-1033.1988.tb13868.x
  • [8] Parage, C.; Tavares, R.; Rety, S.; Baltenweck-Guyot, R.; Poutaraud, A.; Renault, L.; Heintz, D.; Lugan, R.; Marais, G.A.B.; Aubourg, S.; et al.; Structural, Functional, and Evolutionary Analysis of the Unusually Large Stilbene Synthase Gene Family in Grapevine. Plant Physiol. 2012, 160 (3), 1407-1419. DOI: 10.1104/pp.112.202705
  • [9] Calvo-Castro, L.A.; Schiborr, C.; David, F.; Ehrt, H.; Voggel, J.; Sus, N.; Behnam, D.; Bosy-Westphal, A.; Frank, J.; The Oral Bioavailability of Trans-Resveratrol from a Grapevine-Shoot Extract in Healthy Humans Is Significantly Increased by Micellar Solubilization. Mol Nutr Food Res 2018, 62 (9). DOI: 10.1002/mnfr.201701057
  • [10] Chan, E.W.C.; Wong, C.W.; Tan, Y.H.; Foo, J.P.Y.; Wong, S.K.; Chan, H.T.; Resveratrol and Pterostilbene: A Comparative Overview of Their Chemistry, Biosynthesis, Plant Sources and Pharmacological Properties. J. Appl. Pharm. Sci. 2019, 9 (7), 124-129. DOI: 10.7324/JAPS.2019.90717
  • [11] Zhang, L.X.; Li, C.X.; Kakar, M.U.; Khan, M.S.; Wu, P.F.; Amir, R.M.; Dai, D.F.; Naveed, M.; Li, Q.Y.; Saeed, M.; et al.; Resveratrol (RV): A Pharmacological Review and Call for Further Research. Biomedicine and Pharmacotherapy 2021, 143, 112164. DOI: 10.1016/j.biopha.2021.112164
  • [12] Li, Z.; Chen, X.; Liu, G.; Li, J.; Zhang, J.; Cao, Y.; Miao, J.; Antioxidant Activity and Mechanism of Resveratrol and Polydatin Isolated from Mulberry (Morus Alba L.). Molecules 2021, 26 (24), 1-18. DOI: 10.3390/molecules26247574
  • [13] Hangun-Balkir, Y.; McKenney, M.L.; Determination of Antioxidant Activities of Berries and Resveratrol. Green Chem Lett Rev 2012, 5 (2), 147-153. DOI: 10.1080/17518253.2011.603756
  • [14] Ferrier, M.; Billet, K.; Drouet, S.; Tungmunnithum, D.; Malinowska, M.A.; Marchal, C.; Dedet, S.; Giglioli-guivarc, N.; Hano, C.; Lanoue, A.; Identifying Major Drivers of Antioxidant Activities in Complex Polyphenol Mixtures from Grape Canes. Molecules 2022, 27 (4029), 1-13. DOI: 10.3390/molecules27134029
  • [15] Gülçin, I.; Antioxidant Properties of Resveratrol: A Structure-Activity Insight. Innov Food Sci Emerg Technol 2010, 11 (1), 210-218. DOI: 10.1016/j.ifset.2009.07.002
  • [16] Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J. G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.L.; et al.; Small Molecule Activators of Sirtuins Extend Saccharomyces Cerevisiae Lifespan. Nature 2003, 425 (6954), 191-196. DOI: 10.1038/nature01960
  • [17] Stacchiotti, A.; Favero, G.; Rezzani, R. Resveratrol and SIRT1 Activators for the Treatment of Aging and Age-Related Diseases. In Resveratrol - Adding Life to Years, Not Adding Years to Life; 2019. DOI: 10.5772/intechopen.78977.
  • [18] Malinowska, M.A.; Billet, K.; Drouet, S.; Munsch, T.; Unlubayir, M.; Tungmunnithum, D.; Giglioli-Guivarc’H, N.; Hano, C.; Lanoue, A.; Grape Cane Extracts as Multifunctional Rejuvenating Cosmetic Ingredient: Evaluation of Sirtuin Activity, Tyrosinase Inhibition and Bioavailability Potential. Molecules 2020, 25 (9), 1-16. DOI: 10.3390/molecules25092203
  • [19] Subedi, L.; Lee, T.H.; Wahedi, H.M.; Baek, S.; Kim, S.Y.; Resveratrol-Enriched Rice Attenuates UVB-ROS-Induced Skin Aging via Downregulation of Inflammatory Cascades. Oxidative Medicine and Cellular Longevity 2017, 2017, 8379539. DOI: 10.1155/2017/8379539
  • [20] Dumont, Y.; Duranton, A.; Vercauteren, F.; Breton, L.; Protective Action of Resveratrol in Human Skin : Possible Involvement of Specific Receptor Binding Sites. Plose one 2010, 5 (9), e12935. DOI: 10.1371/journal.pone.0012935
  • [21] Ardid-Ruiz, A.; Harazin, A.; Barna, L.; Walter, F.R.; Bladé, C.; Suárez, M.; Deli, M.A.; Aragonès, G.; The Effects of Vitis Vinifera L. Phenolic Compounds on a Blood-Brain Barrier Culture Model: Expression of Leptin Receptors and Protection against Cytokine-Induced Damage. J Ethnopharmacol 2020, 247, 112253. DOI: 10.1016/j.jep.2019.112253
  • [22] Goswami, S.K.; Das, D.K.; Resveratrol and Chemoprevention. Cancer Lett. 2009, 284 (1), 1-6. DOI: 10.1016/j.canlet.2009.01.041
  • [23] Kang, M. C.; Cho, K.; Lee, J.H.; Subedi, L.; Yumnam, S.; Kim, S.Y.; Effect of Resveratrol-Enriched Rice on Skin Inflammation and Pruritus in the NC / Nga Mouse Model of Atopic Dermatitis. Int. J. Mol. Sci. 2019, 20, 1428. DOI: 10.3390/ijms20061428
  • [24] Potter, G.A.; Patterson, L.H.; Wanogho, E.; Perry, P.J.; Butler, P.C.; Ijaz, T.; Ruparelia, K.C.; Lamb, J.H.; The Cancer Preventative Agent Resveratrol Is Converted to the Anticancer Agent Piceatannol by the Cytochrome P450 Enzyme CYP1B1. Br. J. Cancer 2002, 85 (5), 774-778. DOI: 10.1038/sj/bjc/6600197
  • [25] Chow, H.H. S.; Garland, L.L.; Hsu, C.H.; Vining, D.R.; Chew, W.M.; Miller, J.A.; Perloff, M.; Crowell, J.A.; Alberts, D.S.; Resveratrol Modulates Drug- and Carcinogen-Metabolizing Enzymes in a Healthy Volunteer Study. Cancer Prevention Research 2010, 3 (9), 1168-1175. DOI: 10.1158/1940-6207.CAPR-09-0155
  • [26] Nguyen, A.; Martinez, M.; Stamos, M.J.; Moyer, M.P.; Hope, C.; Holcombe, R.F.; Results of a Phase I Pilot Clinical Trial Examining the Effect of Plant-Derived Resveratrol and Grape Powder on Wnt Pathway Target Gene Expression in Colonic Mucosa and Colon Cancer. Cancer Manag. Res. 2009, 1, 25-38.
  • [27] Akinwumi, B.C.; Bordun, K.A.M.; Anderson, H.D.; Biological Activities of Stilbenoids. Int. J. Mol. Sci. 2018, 19 (3), 792. DOI: 10.3390/ijms19030792
  • [28] Li, T.; Tan, Y.; Ouyang, S.; He, J.; Liu, L.; Resveratrol Protects against Myocardial Ischemia-Reperfusion Injury via Attenuating Ferroptosis. Gene 2022, 808, 145968. DOI: 10.1016/j.gene.2021.145968
  • [29] Sebai, H.; Sani, M.; Aouani, E.; Ghanem-Boughanmi, N.; Cardioprotective Effect of Resveratrol on Lipopolysaccharide-Induced Oxidative Stress in Rat. Drug Chem Toxicol 2011, 34 (2), 146-150. DOI: 10.3109/01480545.2010.494666
  • [30] Sharma, S.; Misra, C.S.; Arumugam, S.; Roy, S.; Shah, V.; Davis, J.A.; Shirumalla, R.K.; Ray, A.; Antidiabetic Activity of Resveratrol, a Known SIRT1 Activator in a Genetic Model for Type-2 Diabetes. Phytotherapy Research, 2011, 25 (1), 67-73. DOI: 10.1002/ptr.3221
  • [31] Moreno, D.A.; Ilic, N.; Poulev, A.; Brasaemle, D.L.; Fried, S.K.; Raskin, I.; Inhibitory Effects of Grape Seed Extract on Lipases. Nutrition 2003, 19 (10), 876-879. DOI: 10.1016/S0899-9007(03)00167-9
  • [32] Zhu, X.; Wu, C.; Qiu, S.; Yuan, X.; Li, L.; Effects of Resveratrol on Glucose Control and Insulin Sensitivity in Subjects with Type 2 Diabetes: Systematic Review and Meta-Analysis. Nutr Metab (Lond) 2017, 14 (1), 1-10. DOI: 10.1186/s12986-017-0217-z
  • [33] Szkudelska, K.; Deniziak, M.; Sassek, M.; Szkudelski, I.; Noskowiak, W.; Resveratrol Affects Insulin Signaling in Type 2 Diabetic Goto-Kakizaki Rats. Int. J. Mol. Sci. 2021, 22 (5), 2469. DOI: 10.3390/ijms22052469
  • [34] Tomé-Carneiro, J.; Larrosa, M.; Yáñez-Gascón, M.J.; Dávalos, A.; Gil-Zamorano, J.; Gonzálvez, Manuel García-Almagro, F.J.; Ruiz Ros, J.A.; Tomás-Barberán, F.A.; Espín, J.C.; García-Conesa, M.-T.; One-Year Supplementation with a Grape Extract Containing Resveratrol Modulates 2 Inflammatory-Related MicroRNAs and Cytokines Expression in Peripheral Blood 3 Mononuclear Cells of Type 2 Diabetes and Hypertensive Patients with Coronary Artery 4 Disease. Pharmacol. Res. 2013, 72, 69-82. DOI: 10.1016/j.phrs.2013.03.011
  • [35] Gómez-Zorita, S.; Milton-Laskibar, I.; Eseberri, I.; Beaumont, P.; Courtois, A.; Krisa, S.; Portillo, M.P.; Beneficial Effects of ε-Viniferin on Obesity and Related Health Alterations. Nutrients 2023, 15 (4), 928. DOI: 10.3390/nu15040928
  • [36] Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; De, T. Van.; Europe PMC Funders Group Calorie Restriction-like Effects of 30 Days of Resveratrol ( ResVida TM ) Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans. 2014, 14 (5). DOI: 10.1016/j.cmet.2011.10.002.Calorie
  • [37] Alberdi, G.; Rodríguez, V.M.; Miranda, J.; Macarulla, M.T.; Churruca, I.; Portillo, M.P.; Thermogenesis Is Involved in the Body-Fat Lowering Effects of Resveratrol in Rats. Food Chem 2013, 141 (2), 1530-1535. DOI: 10.1016/j.foodchem.2013.03.085
  • [38] Xu, C.; Song, Y.; Wang, Z.; Jiang, J.; Piao, Y.; Li, L.; Jin, S.; Li, L.; Zhu, L.; Yan, G.; Pterostilbene Suppresses Oxidative Stress and Allergic Airway Inflammation through AMPK/Sirt1 and Nrf2/HO-1 Pathways. Immun Inflamm Dis 2021, 9 (4), 1406-1417. DOI: 10.1002/iid3.490
  • [39] Abbasi, B.H.; Siddiquah, A.; Tungmunnithum, D.; Bose, S.; Younas, M.; Garros, L.; Drouet, S.; Giglioli-Guivarc’h, N.; Hano, C.; Isodon Rugosus (Wall. Ex Benth.) Codd in Vitro Cultures: Establishment, Phytochemical Characterization and in Vitro Antioxidant and Anti-Aging Activities. Int. J. Mol. Sci. 2019, 20 (2). DOI: 10.3390/ijms20020452
  • [40] Adrian, M.; Jeandet, P.; Effects of Resveratrol on the Ultrastructure of Botrytis Cinerea Conidia and Biological Significance in Plant/Pathogen Interactions. Fitoterapia 2012, 83 (8), 1345-1350. DOI: 10.1016/j.fitote.2012.04.004
  • [41] Wang, J.; Ho, L.; Zhao, Z.; Seror, I.; Humala, N.; Dickstein, D.L.; Thiyagarajan, M.; Percival, S.S.; Talcott, S.T.; Maria Pasinetti, G.; Moderate Consumption of Cabernet Sauvignon Attenuates Aβ Neuropathology in a Mouse Model of Alzheimer’s Disease. The FASEB Journal 2006, 20 (13), 2313-2320. DOI: 10.1096/fj.06-6281com
  • [42] Wang, J.; Ho, L.; Zhao, W.; Ono, K.; Rosensweig, C.; Chen, L.; Humala, N.; Teplow, D.B.; Pasinetti, G.M.; Grape-Derived Polyphenolics Prevent Aβ Oligomerization and Attenuate Cognitive Deterioration in a Mouse Model of Alzheimer’s Disease. Journal of Neuroscience, 2008, 28 (25), 6388-6392. DOI: 10.1523/JNEUROSCI.0364-08.2008
  • [43] Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al.; Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell 2006, 127 (6), 1109-1122. DOI: 10.1016/j.cell.2006.11.013
  • [44] Billet, K.; Unlubayir, M.; Munsch, T.; Malinowska, M.A.; Dugé de Bernonville, T.; Oudin, A.; Courdavault, V.; Besseau, S.; Giglioli-Guivarc’h, N.; Lanoue, A.; Post-Harvest Treatment on Wood Biomass from a Large Collection of European Grape Varieties: Impact for the Selection of Polyphenol-Rich Byproducts. ACS Sustain. Chem. Eng. 2021, 9 (9), 3509-3517. DOI:10.1021/acssuschemeng.0c07875
  • [45] Billet, K.; Houillé, B.; de Bernonville, T.D.; Besseau, S.; Oudin, A.; Courdavault, V.; Delanoue, G.; Guérin, L.; Clastre, M.; Giglioli-Guivarc’h, N.; et al.; Field-Based Metabolomics of Vitis Vinifera L. Stems Provides New Insights for Genotype Discrimination and Polyphenol Metabolism Structuring. Front Plant Sci 2018, 9, 798. DOI: 10.3389/fpls.2018.00798
  • [46] Pascual-Martí, M.C.; Salvador, A.; Chafer, A.; Berna, A.; Supercritical Fluid Extraction of Resveratrol from Grape Skin of Vitis Vinifera and Determination by HPLC. Talanta 2001, 54 (4), 735-740. DOI: 10.1016/S0039-9140(01)00319-8
  • [47] Püssa, T.; Floren, J.; Kuldkepp, P.; Raal, A.; Survey of Grapevine Vitis Vinifera Stem Polyphenols by Liquid Chromatography-Diode Array Detection-Tandem Mass Spectrometry. J Agric Food Chem 2006, 54 (20), 7488-7494. DOI: 10.1021/jf061155e
  • [48] Sebastià, N.; Soriano, J. M.; Montoro, A.; Pérez-Bermúdez, P.; Gavidia, I.; Berries: Properties, Consumption and Nutrition, in.: Berries: Properties, Consumption and Nutrition; (Ed.: Tuberoso, C.) 2012, 37-53 Nova Science Publishers, Inc.
  • [49] Sales, J.M.; Resurreccion, A.V.A.; Resveratrol in Peanuts. Crit Rev Food Sci Nutr 2014, 54 (6), 734-770. DOI: 10.1080/10408398.2011.606928
  • [50] Bolling, B.W.; Mckay, D.L.; Blumberg, J.B.; The Phytochemical Composition and Antioxidant Actions of Tree Nuts. Asia Pac J Clin Nutr 2010, 19 (1), 117-123.
  • [51] Counet, C.; Callemien, D.; Collin, S.; Chocolate and Cocoa: New Sources of Trans-Resveratrol and Trans-Piceid. Food Chem 2006, 98 (4), 649-657. DOI: 10.1016/j.foodchem.2005.06.030
  • [52] Espinoza, J.L.; Trung, L.Q.; Inaoka, P.T.; Yamada, K.; An, D.T.; Mizuno, S.; Nakao, S.; Takami, A.; The Repeated Administration of Resveratrol Has Measurable Effects on Circulating T-Cell Subsets in Humans. Oxidative Medicine and Cellular Longevity 2017, 2017, 6781872. DOI: 10.1155/2017/6781872
  • [53] Kubica, P.; Szopa, A.; Prokopiuk, B.; Komsta, Ł.; Pawłowska, B.; Ekiert, H.; The Influence of Light Quality on the Production of Bioactive Metabolites - Verbascoside, Isoverbascoside and Phenolic Acids and the Content of Photosynthetic Pigments in Biomass of Verbena Officinalis L. Cultured in Vitro. J Photochem Photobiol B 2020, 203, 111768. DOI: 10.1016/j.jphotobiol.2019.111768
  • [54] Ignat, I.; Volf, I.; Popa, V.I.A; Critical Review of Methods for Characterisation of Polyphenolic Compounds in Fruits and Vegetables. Food Chem 2011, 126 (4), 1821-1835. DOI: 10.1016/j.foodchem.2010.12.026
  • [55] Řezanka, T.; Kolouchová, I.; Gharwalová, L.; Sigler, K.; Metabolic Screening of Wine (Grapevine) Resveratrol, In: Studies in Natural Products Chemistry, 2019, 59, 1-30. DOI: 10.1016/B978-0-444-64179-3.00001-3
  • [56] Lambert, C.; Richard, T.; Renouf, E.; Bisson, J.; Waffo-Téguo, P.; Bordenave, L.; Ollat, N.; Mérillon, J.M.; Cluzet, S.; Comparative Analyses of Stilbenoids in Canes of Major Vitis Vinifera L. Cultivars. J Agric Food Chem 2013, 61 (47), 11392-11399. DOI: 10.1021/jf403716y
  • [57] Pawlus, A.D.; Sahli, R.; Bisson, J.; Rivière, C.; Delaunay, J.C.; Richard, T.; Gomès, E.; Bordenave, L.; Waffo-Téguo, P.; Mérillon, J.M. Stilbenoid Profiles of Canes from Vitis and Muscadinia Species. J Agric Food Chem 2013, 61 (3), 501-511. DOI: 10.1021/jf303843z
  • [58] Zheng, P.; Kucza, N.J.; Patrick, C.L.; Müllner, P.; Dunand, D.C.; Mechanical and Magnetic Behavior of Oligocrystalline Ni-Mn-Ga Microwires. J Alloys Compd 2015, 624, 226-233. DOI: 10.1016/j.jallcom.2014.11.067
  • [59] Silva, F.; Figueiras, A.; Gallardo, E.; Nerín, C.; Domingues, F.C.; Strategies to Improve the Solubility and Stability of Stilbene Antioxidants: A Comparative Study between Cyclodextrins and Bile Acids. Food Chem 2014, 145, 115-125. DOI: 10.1016/j.foodchem.2013.08.034
  • [60] Ratz-Łyko, A.; Arct, J.; Resveratrol as an Active Ingredient for Cosmetic and Dermatological Applications: A Review. Journal of Cosmetic and Laser Therapy 2019, 21 (2), 84-90. DOI: 10.1080/14764172.2018.1469767
  • [61] Jang, M.; Cai, L.; Udeani, G.O.; Slowing, K.V.; Thomas, C.F.; Beecher, C.W.W.; Fong, H.H.S.; Farnsworth, N.R.; Kinghorn, A.D.; Mehta, R.G.; et al.; Cancer Chemopreventive Activity of Resveratrol, a Natural Product Derived from Grapes. Science 1997, 275 (5297), 218-220. DOI: 10.1126/science.275.5297.218
  • [62] Xue, Y.Q.; Di, J.M.; Luo, Y.; Cheng, K.J.; Wei, X.; Shi, Z.; Resveratrol Oligomers for the Prevention and Treatment of Cancers. Oxid Med Cell Longev 2014, 2014, 765832. DOI: 10.1155/2014/765832
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eac38190-5280-4f28-87bc-961183281c0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.